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ABSTRACT

Methods for health monitoring and damage detection have traditionally focused

on finding differences between the intact/undamaged and the damaged structure; e.g.

differences between vibration frequencies, differences in mode shapes, in deformed

shape derivatives, or in flexibility (time domain) or transmissibilities (frequency -

domain) arrays, etc. The likelihood of success in any of the approaches holds then a

strong relationship to the ability of the corresponding damage detection indices utilized

to locate the damage sites (through clear and persistent patterns) based on these

measured differences. However, a careful examination of the existing literature

indicates many serious limitations in this regard. For example, many of the techniques

are heuristic, being conceived for particular types of simple structures. Indeed, almost

exclusively, only one-dimensional trusses and beams are used in the applications. Also,

few of the methods can operate with multiple damage scenarios, and they can be easily

confused by "false" alarm (e.g., changes due to operational/environmental variability or

increased stiffness as opposed to the actual damages).

More recently, a conceptually simple approach, based on the notion of defect

energy in material space by Saleeb and coworkers, has been developed and extensively

studied (from the theoretical and computational standpoints). The present study focuses

on its evaluation from the viewpoint of damage localization capabilities in case of two-

dimensional plates; i.e., spatial pattern recognition on surfaces.

To this end, two different experimental modal test results are utilized; i.e.,

(i) conventional modal testing using (white noise) excitation and accelerometer - type

sensors and (ii) pattern recognition using Electronic speckle pattern interferometry

(ESPI), a full field method capable of analyzing the mechanical vibration of complex

structures. Unlike the conventional modal testing technique (using contacting

accelerometers), these emerging ESPI technologies operate in a non-contacting mode,

can be used even under hazardous conditions with minimal or no presence of noise and

can simultaneously provide measurements for both translations and rotations.

Detailed documentations of the results obtained in the course of the above two

studies have clearly demonstrated the robustness and versatility of the global NDE

scheme developed. This stems from the vectorial character of the indices used, which

enabled the extraction of distinct patterns for localizing damages. In the context of the

targeted pattern recognition paradigm, two algorithms were developed for the

interrogation of test measurements; i.e., intensity contour maps for the damaged index,

and the associated defect energy vector field plots. With this dual representation,

excellent results were obtained. In particular, they provided "fine - grained" visibility for

clear discrimination of the damage single/multiple locations, in any of the vibration

modes considered, and they were capable of distinguishing false-alarm tests from the

case of true damage.
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Defect Localization Capabilities of a Global Detection Scheme: Spacial

Pattern Recognition Using Full-Field Vibration Test Data in Plates

A.F. Saleeb and M. Prabhu

University of Akron

Akron, Ohio

1.0 INTRODUCTION

1.1 General

Many aerospace, civil and mechanical engineering systems are used
continuously despite aging and the associated potential for deterioration and damage

accumulation. Therefore, the ability to monitor the structural health of these systems is

becoming increasingly important, from the viewpoints of both economy and life safety.

As a result, structural health monitoring has received considerable attention in the

technical literature. In this, there has been a concerted effort to develop a firm

mathematical and physical foundation, and the related experimental procedures, to

advance the technology of health monitoring and damage detection.

Structural damage is considered as a weakening of the structure that negatively

affects its performance. Damage may also be defined as any deviation in the structures

original geometric or material properties that may cause undesirable stresses,

displacements, or vibrations on the structure. This weakening and deviation may be due

to cracks, loose bolts, broken welds, corrosion, fatigue, etc. Any crack or localized

damage in a structure reduces the stiffness and increases the damping in the structure.

Reduction in stiffness is associated with decreases in the natural frequencies and

modification of the modes of vibration of the structure. Many researchers have used
one or more of the above characteristics to detect and locate a crack. Most of the

emphasis has been on using the decrease in frequency or the increase in damping to
detect the crack.

Visual inspection has been and still is the most common method used in

detecting damage on a structure. The increased size and complexity of today's

structures can reduce the efficiency of the visual inspections. Conventional visual

inspection can be costly and time consuming, especially when disassembly is necessary

to provide access to the area being inspected. In addition, these visual inspection

techniques are often inadequate for identifying the status of a structure where the

damage is invisible to the human eye. Examples of Nondestructive damage detection

techniques such are:

• Ultrasonic and eddy current scanning.
• Acoustic emission.

• X-ray inspection, etc., provide options to detect the occurrence of damage.

NASA/C_2002-211685 1



These methods are considered as "local" inspection approaches. Structural

damage identification through changes in dynamic characteristics, on the other hand,

provides a "global" way to evaluate the structural state. Dynamic-based damage
detection has drawn worldwide attention due to their infra-structural role.

Despite significant research efforts in the area of nondestructive damage

localization in structures, several problems remain to be solved before damage detection

in real structures becomes a routine activity. A need remains for robust theories of

damage detection to simultaneously include changes in all modal parameters. There is

also a necessity to circumvent the reality of being capable of measuring only a few

modes, particularly in large structures. In addition, we also have to be able to take into

account the experimental errors in measured modal parameters. Furthermore, even if
these types of damage detection theories were available, and experimental errors were

insignificant, the need still exists to account for the uncertainty associated with

modeling the properties and boundary conditions of real structures.

Normally the mode based damage detection technique cannot be directly used for

real measurements. There are still some practical aspects that should be considered
such as,

• System identification

• Finite element modeling and model updating

° Mode shape expansion

• Mode orthonormalization with respect to the mass matrix

• Applicability to real noise or measurement errors.

The dynamic characteristics of a structural system, i.e., eigen-frequencies,

damping ratios and mode shapes can be extracted from dynamic measurements. These

are done by system identification. The main problem is to match the experimental and

analytical mode shapes. In practice, it is impossible to measure all the DOF's ofa FEM

model due to a limited number of sensors. Therefore, mode shape expansion plays an

important role in structural damage identification algorithms based on changes in modal

properties.

Many of the techniques are time intensive and may not be suited for routine

inspection, as results often do not yield quantifiable results. As such a "global" damage

detection method with attributes including economy, efficiency, and ease of operation is

desired. Methods based on observed differences in dynamic behavior of structures,

before and after damage, have been found to be a promising approach. Damage

changes the performance of structures, i.e., it results in a loss of functionality. A

structural system loss of functionality means, within this context a reduction in load

carrying capacity or a reduction in its ability to control motion under imposed forces.

That is, the regional material properties such as Young's modulus, moment of inertia,

mass, local stiffness and damping will be affected. Such property changes will result in

a variation in the system response, as well as eigen-parameters (eigen-values and the

NASA/C_2002-211685 2



corresponding eigenvectors). Variation of these quantities can be used as a tool to

detect damage by means of modal analysis and modal testing. To carryout the

experimental modal analysis, external excitation has to be used, e.g., using an impact

load produced by hammer blows, a vibration generator or a shaking table. For

large-scale civil structures, a natural random excitation is preferred, and mimics wind

gusts, traffic vibration, earthquakes and tides which are available everywhere at any
time.

Much attention has focused on the problem of detecting, locating and sizing

damage in structures using modal parameters. The majority of the previous work has

detected and localized damage using theories from modal analysis or from dynamic

response measurements. Present NDE methods only modestly succeed in the prediction
of damage in structures from limited amount of modal information.

1.2 Problem Statement

Damage detection using NDE techniques has prompted a lot of conceptual,

theoretical and computational work, as well as experimental challenges concerning the

difficulties and problems in obtaining measurements. The most suitable NDE method

would no doubt lead to saving of lives, reduction in human suffering, protection of

property, increased reliability, increased productivity of operations and a reduction in
maintenance cost and time.

There are a number of factors that influence the choice and effective use of any

suitable NDE method. Among them are:

• Input Signal requirement

• Output signal requirement

• Suitability of the Test structure

• Response signature analysis

• Implementation issues

With respect to the input signal the excitation (static vs. dynamic) its type

(forced vs. ambient vibration) as well as the extent (low vs. higher order modes makes

the decision quite tricky. Depending on the application and details of the NDE

algorithm, output-signature measurements (i.e., their type, their qualitative/quantitative

information content, as well as the associated sensor/instrumentation network required)

will significantly impact the overall performance. The use of any NDE technique is

indeed dependent on its ability to handle incomplete, noisy, measurements. With regard

to test structures, their topology and configurations, the great variety of materials in

construction and associated failure/damage modes, as well as their level of

deterioration, are important in designing suitable NDE techniques.
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Therearethreemainspartsof theoverallprocess;i.e.,detectionof localized
faultsor"presence,"estimationof thedamagelocation,andsizingorestimationof the
extentof damage.Thefirst is, of course,themostcritical,whereastheothertwophases
wouldgenerallyrequireadditional,moredetailedmeasurements.Therearebasically
twoalternativeapproachesfor implementationof theseglobaltechniques,i.e.,system-
identificationanddirectpostprocessingof measurementdata.Thetwoapproaches
differmainlyin theamountof dataandtypeof informationsetsutilized. In one
extreme,thesystemidentificationapproachis typicallybasedonacompleteanalytical
modelthatis fitted optimallyto themeasuredresponse.Ontheotherhand,direct
detectionschemesdonotrequireapriori identificationof ananalyticalmodel. Instead,
thekeyingredientis theselectionof anappropriate"measure"or damageparameter
thatis sufficientlysensitiveto slightperturbationin systemproperties.The
implementationsimplyreducesto theprocessingof "raw" experimentaldatawith the
objectivebeingpattern-recognition,usingthenotionof comparisonof processed
signatures,i.e.,thepresent(damage)versusthebase/reference(intact)states.

Tojudgethecorrectnessof anyNDEmethodunderconsideration,thefollowing
stepsarenecessary:

• Theoreticalandcomputationalstudiesalongwithsimulationof themodel
• Laboratorystudiesfor validationof themodel
• Full scaleFielddemonstrationor testing

For asoundandrobusttechnique,all theabovecriteriahavetobe full-filled. In
addition,carryingoutextensivenumericalandexperimentalstudiesunderbothideal
andnoisydataconditionsthatcouldbecomputergenerated.A full field demonstration
of themethodis anessentialstepto clearall thenecessaryobstaclesin themethod
devised.

1.3 Objective of the Current Research

Professor Saleeb and coworkers in an ongoing research program funded by the

NASA Glenn Research Center have successfully developed a direct type global damage

detection technique. The present work is an extension of damage detection to new

types of structures such as plate, shells and disks. Over the years, various researchers

have proven, with experimental investigation and theoretical developments detection

schemes for beam and frame type structures.

This research presents the overall work of damage to plates subjected to flexure

bending (out-of-plane) for a variety of cases of damage. The damage is simulated as

heterogeneity in the structure or a sudden change in the Young's Modulus of Elasticity,

and is measured using a newly proposed damage index, i.e., defect energy parameter. A

few experimental investigations were carried out and are shown in the chapter for

experimental verification. This method proved very versatile, far beyond anyone's
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imagination,in thedetectionof thelocationof damage.Thoughnotexact,thelocation
of damagewasverycloseto theactualcase.Thiswasattributedto theverynoisy
measurementdatafromtheaccelerometersandenvironmentalnoisesuchasthermal
andclimaticeffects.Also, thespecialcontributionof Full FieldInvestigationis
explained.Thisexperimentalinvestigationtechniqueis powerfulin termsof givingthe
slopeandmodaldisplacementof theentirestructure.Mostimportantly,thereisno
humaninterventionandthemeasuredoutputis absolutelyfreeof all environmental
noise.

2.0 BACKGROUND AND LITERATURE REVIEW

2.1 Background

Damage detection is a challenging problem that is under vigorous investigation

by numerous research groups using a variety of analytical and experimental techniques.

Health monitoring techniques may be classified as global or local. Global methods

attempt to simultaneously assess the condition of the whole structure, whereas local

methods provide information about a relatively small region of the system by using

local measurements. The choice of the type of sensors effects the measurements and

their spatial resolution, nature of the instrumentations used and the degree of noise in

the measurement. Finally, the damage detection procedure for the structure concerned

depends upon the level of damage and deterioration of concern, the available

knowledge concerning the ambient dynamic environment, sophistication of the

available computing resources, complexity of the detection scheme, selected threshold

level for detecting perturbations in the system condition and the depth of knowledge

concerning the failure modes of the structure and many more.

The difficult challenge in formulating damage parameters possessing all these

and other desirable attributes (e.g., applicability to different materials, multiple damage

sites various support condition, different vibration modes etc.) is demonstrated by the

numerous proposals made over the years (e.g., natural frequencies, mode shapes,

influence flexibility coefficients, strain mode shape, curvature mode shapes, as well as

ratios, differences and fractions obtained from them). Basically, the performances of

these methods were found to be heavily problem-dependent. With several conflicting

conclusions often reached when using the same measure under different conditions. As

such, there are three main parts involved in the overall process for damage detection

a) Detection of localized damage/fault "presence."

b) Estimation of damage location.

c) Sizing or estimation of the extent of damage.
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Thefirst isof coursethemostcritical,whereastheothertwophaseswould
generallyrequireadditional,moredetailedmeasurements.Therearetwo alternative
approachesfor mathematicalrepresentationandimplementationof theseglobal
detectiontechniques,i.e.,system-identificationanddirectpostprocessingof
measurementdata.Thetwo approachesmainlydiffer in theamountandtypeof
informationsetsutilized. Thesystem-identificationapproachis typicallybasedona
completeanalyticalmodelthatis fittedtothemeasuredresponse.Forthemostpartthe
approachhasbeenrestrictedto numericalsimulationsof linearsystems.In additionto
theintensecomputationaldemands,anothermaindisadvantageis theneedtotreatthe
'inherentnon-uniqueness'causedby incompletenessof measureddatawithnoise.
Morerecently,artificialneuralnetworkinghasbeenusedasanattemptto remedysome
of theseproblems,but theystill remaincomputationallyintensive. Butthedirect
detectionschemerequiresakeyingredientfor theselectionof theappropriate'measure'
ordamageparameter,which issufficientlysensitiveto anyslightperturbationin system
properties.Thewholeimplementationsimplyreducesto processingof raw
experimentaldata,theobjectivebeingpattern-recognition,usingthenotionof
comprisedprocessedsignatures,i.e.,present(damage)versesthebase/reference(intact)
states.Sharperresolutionwill beobtainif thereis moredistinctdifferencesbetween
twosignatures.Thepresenceof noisydataandconsistencyof distinctivepatternsunder
differentexcitations(i.e.,differentvibrationmodesordifferentstaticloadintensities)
reflectsontherobustnessofNDEtechnique.

Wehaveseenthebasicideabehindunderstandinganddevelopingadamage
detectiontechniquefor structures.Thenextarticlesummarizesthevarious
contributionsby researcherovertheyearsto thefield of NDEtechnologyfor damage
detection.Emphasiswill beputonthedirect-typeglobalmethodssimilarto thepresent
parametricinvestigationof damagein disktypestructures.

2.2 Material Properties at Damage

The term damage refers to the degradation or failure of a material. Damage can

originate from diverse phenomena such as oxidation, carbonation, mechanical work, or

any type of disintegration or weakening from aging or mechanical processes. Within the

framework of damage mechanics, only that which causes the loss of area, associated

with change in local material properties such as Young's modulus E, moment of inertia

I, stiffness and flexibility and energy dissipation, is considered. When such changes

occur there is a change of the entire physical system. This change leads a to change in

vibration characteristics in physical space and also in material space

In physical space, when abrupt reductions in the cross section of a beam are

considered, the properties have been changed, especially for the relationships between

geometry and the centerline deflection curves. For free vibration behavior, such a beam

results in a noticeable error in natural frequencies because of the overestimation of the

bending stiffness. It was found that resonant frequency and vibration amplitudes were
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considerablyaffectedby thepresenceof cracks.A changein energywith respectto
damageisalsoimportant.Damageto engineeringmaterialsessentiallyresultsin a
decreasein thefreeenergystoredin abodywith consequentdegradationof thematerial
stiffness.

In materialspace,damagecreatesheterogeneityin ahomogenousbody,with
consequentreductionof materialpropertiesincludingYoung'smodulus,stiffnessand
momentof inertia.Soin bothcases,damageaffectstheYoung'smodulus,stiffnessand
momentof inertia.

2.3 Signature Analysis or Pattern Recognition Approaches

The signature of a structure is related to its dynamic characteristics and is one of

most widely used damage detection techniques. The observed changes in the structure,

for example, like modal parameters, are compared to a database of possible changes and

the most likely change is selected for detecting damage and locating its position.

Stubbs and Oseguda [1,2] applied a finite difference to the homogeneous

equations of motion of an undamaged structure to yield expressions for the changes in

modal stiffness in terms of modal masses, modal damping, eigen-frequencies,

eigenvectors and their respective changes. Using matrix structural analysis, expressions

relating variations in stiffnesses of structural elements to the variations in modal

stiffness were generated resulting in a system of algebraic equations with a known load

vector of fractional changes in modal stiffness and unknown fractional changes in

member stiffnesses. Experimental evidence, obtained from their controlled laboratory

experiments provided support to their damage detection technique. Dynamic responses

of the damaged and undamaged frequencies were obtained from a cantilevered

specimen. Using experimental frequency responses of the specimen and the

numerically generated sensitivity matrix, they predicted the location and magnitude of

the damage on the specimen.

Biswas et al. [3] studied several dynamic parameters for damage detection using

full scale modal testing. A probable failure due to a large fatigue crack was simulated

by unfastening a set of high-strength bolts in a splice connection of a steel highway

bridge. Experimental modal testing was performed for the intact case as well as the

cracked case. Results indicate the presence of detectable changes in some of the

response data to a simulated physical failure. Non-parametric information, i.e., time

records, frequency spectra, transfer functions as well as parametric information, i.e.,

modal frequencies and mode shapes had been examined. The modal Assurance Criteria

(MAC) and modal frequencies can detect the damage in higher modes; otherwise the

modal frequencies were not sensitive.
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Modalcurvaturemethodwasusedby Wahabetal. [4] to detectdamagein a
prestressedconcretebridge.To establishtheirmethodtheyusedsimulateddatafrom
simplysupportedandcontinuousbeamscontainingdamagedpartsatdifferentlocations.
A damageindicatorcalleda"curvaturedamagefactor"wasintroducedwhichis the
differencein curvaturemodeshapesfor all modesandcouldbesummarizedbyone
numberfor eachmeasuredpoint. Forseveraldamagelocationsin thestructure,all
modesshouldbecarefullyexamined.Thelowermodesare,ingeneral,moreaccurate
thanthehighermodes.Whenmorethanonefaultexitsin thestructure,it isnot
possibleto locatedamagein all positionsfromtheresultof only onemode.

GattulliandRomeo[5]proposedanintegratedprocedurebasedonadirect
adaptivecontrolalgorithmandwasappliedto structuralsystemsfor bothvibration
suppressionanddamagedetection.Thisis accomplishedbytrackingareferenceoutput
of anarbitrarymodelwith desireddampingcharacteristicsandby detectingon-line
mechanicalparametersvariations.A largenumberof mechanicalparametersareshown
to beidentifiableinnon-collocatedconfigurations.Usingfull-statefeedback,these
capabilitiesareeffectivelyexploitedfor oscillationreductionandhealthmonitoringof
uncertainmulti-degree-of-freedom(MDOF)shear-typestructures.

Hajemstadetal. [6] developedanalgorithmfor damagedetectionand
assessmentbasedonsystemidentificationusingafiniteelementmodelandthe
measuredmodalresponseof astructure.A changein anelementconstitutiveproperty
fromabaselinevalueis takenasindicativeof damage.A MonteCarlosimulationwas
usedto determinethethresholdvaluesthatdistinguisheddamagefromthemeasured
experimentalnoisyvalues.However,identificationof geometricfeaturesof asolid
body,in general,is inherentlymoredifficult thanidentificationof constitutive
parameters.

Ultrasonicnon-destructivetestingis widelyusedmethodto findvariouskindsof
defectsin structures.Thismethodis especiallyusefulinmaterialcomponentsthatare
isotropic.Themethodis alsousefulin theinspectionof compositematerialsalthough
theanisotropyinducesseveralcomplicationsin interpretingtheresultsobtainedatthe
examination.Grahn[7] demonstratedthe2-Dscatteringproblemof aninternalcrackin
a layeredanisotropicplate. Heshowedacompleteultrasonicsimulationmodel(i.e.,the
outputfromthereceivingprobeismodeled)of alayeredanisotropicplatethatcanbe
comparedto alayeredcompositeplate.Hesolvedhisproblemby derivingtheGreen
functionfor thelayeredplateandthenusingtheintegralrepresentationfor thetotal field
to obtainanintegralequationfor thecrackopeningdisplacement.Theintegralequation
is solvedby expandingthecrackopeningdisplacement(COD)in Chebyshevfunctions.

Laserultrasonictechniqueswereusedby Dokunetal. [8] to monitorultrasonic
property-frequency-dependantRayleighwavevelocity(materialdispersion)andthen
relateschangesin thisacousticpropertyto materialproperties(suchasstiffness)that
characterizedamage.Theexperimentalprocedureconsistsof measuringaseriesof
transientelasticwaveformsin athickFRP(FiberReinforcedPlastic)specimenandthen
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operatingonthesewaveformswith2D fastFouriertransformationto developthe
dispersionrelationshipforthatspecimen.Materialdegradation(damage)is introduced
intothesespecimenswithenvironmentalaging,andthedispersioncarvesareusedto
quantitativelytrackchangesinmaterialproperties.

Sampaioetal. [9] triedto developamethodthatcoversall fourstepsof the
processof damagedetection existence,localization,extentandprediction.They
developedwith thefrequency response function- curvaturemethod,encompassing
thefirst threeof theabovemethodsandbasedonly onthemeasureddatawithoutthe
needfor anymodalidentification.Thismethodperformedwell in detecting,locating
andquantifyingdamage,although,the lastitemstill neededto befurtherdevelopedand
bettercharacterized.Themainadvantageof thismethodwasits simplicityandnoneed
for performingamodalanalysisfor the identificationof modeshapesorresonant
frequencies,asin thecaseof othermethods.

Thyagarajanetal. [10],in theirpaperusedtheFRF(frequency response
function)dataandoptimizationto diagnosedamagein astructureusingaminimum
numberof sensors.Theirtechniquedid notusemodalanalysis,modalreductionor a
trainingstepbutusedall theinformationcontainedin theFRFdata(notjust the
informationaroundthepeaks),themodalconnectivityandtheboundsonthestructural
stiffnessvaluesto diagnosethedamage.Theysuggesteddetectingdamagein large
structures,scanningsectionsof themodelto detectanddiagnosedamage.This
scanningwasbasedonthenodalconnectivitypatternsof theelementsandrunninga
separateoptimization.Theonlydrawbackof theirtechniquewasthatit requiredalot of
computationandwasrestrictedto smallmodels.To overcomethesecondlimitationof
theFRFsnotbeingexactlyrepeatabledueto variationsin temperaturewhichchanges
theelasticmodulusandcausesboundaryconditionsto change,atechniquethatshifts
thefrequencytoremoveglobalstructuralchangesdueto theenvironmentwasused.

DiPasqualeetal. [11],proposedasearlyas1989thattheglobaldamageindices
basedonequivalentmodalparametersaredefinedusingthevibrationalparametersof
anequivalentlinearstructure.Damageto engineeringmaterialsessentiallyresultsin a
decreaseof thefreeenergystoredin thebodywith consequentdegradationof the
materialstiffness.Theyshowedthattheparameterbasedglobaldamageindicescanbe
relatedto thelocaldamagevariablesthroughoperationsof averagingoverthebody
volume.

Rayetal. [12]usedamethodof enhancingmodalfrequencysensitivityto
damageusingfeedbackcontrol.Themethodwasintendedfor smartstructures,which
embodiedselfactuationandself-sensingcapabilities.Usingstatefeedback,closed
loopmodalmodalfrequenciesareplacedatlocationsin thecomplexplanethatenhance
sensitivityto particulartypesof damage.

A wavelet-basedapproachfor StructuralHealthMonitoring(SHM)anddamage
detectionwasusedby Z. Houetal. [13]. Themethodis appliedto simulationdata
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generatedfromasimplestructuralmodelsubjectedto aharmonicexcitation.Spikesin
detailsof thewaveletdecompositionmaydetectchangesin systemstiffness,andthe
locationsofthesespikesindicatethemomentwhenstructuraldamageoccurred.

2.4 Modal Updating and System Identification Approaches

Stubbs and Garcia [ 14] showed the use of pattern recognition to localize damage

in structures in general and bridge structures in particular. In the physical world data

are transduced into the so-called pattern space. Using techniques of dimensionality

reduction, the pattern space is reduced to a smaller dimension known as the feature

space. Data in the feature space are introduced to a decision algorithm, and the
elements of the feature space are classified into a finite number of clusters. They

developed a theory of damage localization to identify a feature space that can be defined

entirely from measurable parameters and then propose several classification algorithms

to aid in identifying a given portion of the structure as damaged or undamaged. This

theory was then applied to the localization of damage in a three dimensional finite

element model of a real bridge structural element.

Ren and De Roeck [15, 16], proposed a damage identification technique based

on a change in frequencies and mode shapes of vibration, for predicting damage

location and severity. The method is applied at an element level with a conventional

finite element model. The element damage equations have been established through the

eigen-value equations that characterize the dynamic behavior. The influence of noise

was also shown and they verified their method by a number of damage scenarios for

simulated beams and found the exact location and severity of damage. They

demonstrated that multiplying the damage eigen-value equations with the undamaged or

damaged mode shapes provides more equations and guarantees the damage localization.

Stubbs and Topole [ 17], proposed a formulation that localizes and determines

the sizes changes in the stiffness of the structure. Generally such changes are a

reduction in stiffness and are associated with some type of structural damage. Serious

damage will change the stiffness locally and globally. Thus, in this study, a reduction in

stiffness is generally interpreted as damage. However, reductions in stiffness do not

necessarily relate to damage. Therefore, the algorithm is a conservative method to

determine potential locations of damage.

Sohn and Law [ 18, 19] demonstrated the use of load-dependent ritz vectors from

vibration data along with Bayesian probabilistic approach for damage detection. As

applied to multistory frame structures. The approach is applied to identify multiple

damage locations using estimated modal parameters when (1) the measurement data are

potentially corrupted with noise, (2) only a small number of degrees of freedom are

measured and (3) a few fundamental modes are estimated. They also proposed a

branch-and-bound search scheme and a simplified approach for modeling a multistory

frame structure. As an alternative to modal vectors, load-dependent Ritz vectors have
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been shown useful in various areas of structural dynamics such as model reduction and

damage detection. They also presented a procedure to extract these load-dependent Ritz

vectors using a complete flexibility matrix constructed from measured vibration test

data. The method shows the construction of the Ritz vectors corresponding to both the

actual load pattern employed in the vibration test and from arbitrary load patterns. An

experimental study on the use of Ritz vectors was described [20, 21] for damage

detection of a grid-type bridge model. A procedure for extraction of the Ritz vector

from experimental modal analysis and then used for the damage detection of the test

structure using a Bayesian probabilistic approach.

F. Vestroni and D. Capecchi [22] found damage by frequency measurement. A

linear behavior was assumed, before and after the damage. The method was described
and used when frequencies are the observed quantities. The procedure is generalized by

assuming finite-element interpretative models and an automatic algorithm of modal

updating, which is used to determine the best stiffness distribution for an assigned

location of damage. A minimum amount of frequencies are necessary to obtain a

unique solution. This is important, because the problem is often over determined. A

quantity of measured data is important to reach an acceptable solution.

Gawronski and Sawicki [23] used modal and sensor norms to determine damage

locations in flexible structures. It provided information about the impact of the damage

on the natural modes of the damaged structures. As the norm is determined from the

system natural frequencies, modal damping ratios, and the input and output gains, they

depend neither on the input time history nor the actual system deformation.

Hung-Liang et al. [24] presented a nondestructive evaluation method to identify

the structural stiffness of ceramic candle filters. All filters were subjected to an

excitation force, and the response was picked up by an accelerometer in a free-free

boundary condition. The frequency response function and vibration mode shapes of

each filter were evaluated. Beam vibration equations and finite element models were

built to calculate the filter's dynamic response. The results indicated that the vibration

signatures could be used as an index to quantify the structural properties. The results

also estimate the overall bending stiffness values for four different types of candle

filters. The used filters showed stiffness degradation. The location and the size of the

damaged section were identified using the measured modified model modal strain

energy procedure.

The dynamic bending stiffness was used by Maeck et al. [25] to detect damage.

Different techniques are discussed and compared to derivations from experimentally

determined modal characteristics of a reinforced concrete beam from its dynamic

bending stiffness. The degradation of stiffness, due to cracking of the reinforced

concrete, gives information on the position and severity of the damage that has

occurred. The direct stiffness calculation needs the experimental mode shapes in

deriving the dynamic stiffness through the curvature calculations. The advantage of this

method is that no numerical model is needed to obtain the dynamic stiffness
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distribution.However,aratherdensemeasurementgrid isnecessarytobeableto
identifyaccuratelythehighermodeshapesfor curvaturecalculations.

Yuen[26]presentedasystematicstudyof therelationshipbetweendamage
locationandsize,andthechangein theeigenvaluesandeigenvectorsof acantilever
beamby introducingdamageto eachelementandalsoby varyingthedegreeof damage
for thecaseof a fixeddamagelocation.Damagewasmodeledasamodulusreduction
in anelementof thebeam.Twoeigenparameterswerestudied,i.e.,translationand
rotation.Bothshowedasuddenchangeatthedamagedregionalongthebeam
coordinate.However,therotationeigen-parameterwasnotdetectedfor highermodes.

Crackedrotatingshaftsexhibitacertainparticulardynamicresponseduetothe
localflexibility of thecrackedsection.DimarogonasandPapadopoulos[27] foundthe
localflexibility of acrackedsectionof a cylindricalshaftby usingtheParisenergy
equation.Computationof thelocal flexibility wasbasedonaplanestrainassumption
for thestrip. Suchafactorisnotavailablefor thetransversecrackonacylinder.
Nevertheless,theexperimentalresultsshowthatapproachto bequiteadequate.The
uncoupledbendingvibrationof arotorandatransversesurfacecrackwerealso
investigated.

AkgunandJu[28,29] evaluateddamagebyusinganelectricalanalogymethod.
Basedonmodalfrequencies,theyformulateddamagefunctions.Investigationwas
madeonmultiplecracksin abeamstructure.Themultiplecrackswerenotclosely
spacedandcannotbedetermined.Later,asimilarapproachwasextendedto the
evaluationof framestructures.Theoptimumexcitation,locationandfrequencyandthe
optimumlocationfor responsemeasurementweredetermined.

Anothermethod,developedby C.-P.Fritzenetal. [30] isbasedupona
mathematicalmodelrepresentingtheundamagedvibratingstructureandalocal
descriptionof thedamage,e.g., a finiteelementfor acrackedbeam.Theproblemof
modelingerrorsandtheirinfluenceto damagelocalizationaccuracyandanapproachto
obtainreliableresultsispresented.Themethodwasdemonstratedthroughapplication
to laboratorystructuresin thefrequencydomainusingfrequencyresponsefunctionsin
thetimedomain. Buttheaccuracyof theoriginalmodelwasfoundto beof great
importance.

Timedomainanalysiscanalsobeusedfor thesamepurpose.Tsaiet al. [31]
formulatedthecross-randomdecrementmethodin atimedomain.Thefreedecay
responsescontainmanystructuralmodes.Themodalfrequencies,dampingandthe
complexamplitudeswereresolvedby curvefitting. Theseparameterswereusedfor
damagedetection.Thediscretizationtimeintervalandthenumberof sampleddata
pointswerefoundtobeimportantfactorsaffectingnumericalaccuracy.Thistechnique
wasalsoappliedto anoffshorestructureby Yangetal. [32]to detectdamage.It only
requiresthemeasurementof thedynamicresponseof thestructure.Here,aninitial
seriesof testswasconductedto establishbaselinedatasoasto advocateaphysical
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descriptionof theplatformpriorto anydamageandagainstwhichthedatafromthe
damagedmodecouldbecompared.Theywereverysuccessfulin thedetectionof small
fatiguecracksbutdetectingthelocationof suchadamagewasnotdeveloped.

Riozetal. [33] developedamethodthatcanbeusedto identifycracksin
structuresby measuringitsmodalcharacteristics.Theymeasuredtheflexural
vibrationsof acantileverbeamwith arectangularcross-sectionhavingatransverse
crackextendinguniformlyalongthewidthof thebeamandanalyticalresultswereused
to relatethemeasuredvibrationmodesto thecracklocationanddepth.Fromthe
measuredamplitudesattwopointsof thestructurevibratingatoneof itsnaturalmodes,
therespectivevibrationfrequencyandananalyticalsolutionof thedynamicresponse,
thecracklocationwasfoundanddepthestimatedwithease.Themainadvantageof the
methodis thatit couldbecarriedoutonthesitewith rathersimpleequipmentand
modestcalculations.Thedrawbacksof themethodwasthatit waspossiblefor onlya
onedimensionalstructure(structureswith analyticaldescriptions)or canbemodeled
with finiteelementmethodor someotherconventionaldiscretizationmethod.

Pandeyet al. [34]investigatedtheparametercalledcurvature-modeshapesfor
identifyingandlocatingdamagein astructure.Theyshowedthatby usingtheabsolute
changein thisparameteris locatedin theregionof damage,andhencecanbeusedto
detectdamagein astructure.Thechangesin thecurvaturemodeshapeincreaseswith
increasingdamage.Thedifferenceinmodalcurvaturebetweentheintactandthe
damagedbeamshowednotonlyahighpeakatthefaultposition,butalsosomesmall
peaksatdifferentundamagedlocationsfor highermodes.

Paietal. [35,36]presentedamethodof pinpointingstructuraldamagelocations
usingoperationaldeflectionshapes(ODSs)measuredby ascanninglaservibrometer.
Thismethodinitially assumesaformfor theODSsto matchwith theexperimentaldata
usingasliding-window-least-squaresmethodto determinethefourcoefficientsof the
initially assumedequation.Eachof thesecoefficientsrepresentedthecentralsolution
of displacement,boundarylayersolutionof displacementcausedbyboundary
constraints,centralsolutionof slopeandboundary-layersolutionof slope.Theyalso
developedtheboundaryeffectdetection(BED)methodfor findingdamagelocations.
Thismethodrequiresnomodelorhistoricaldatafor locatingstructuraldamage.At the
damagelocationtheboundarylayersolutionof slopechangessign,andtheboundary
layersolutionof displacementpeaksupor dimplesdown. Theyshowedtheeffectof
noiseanddifferenttypesof damageandhowtheyaffectthedamagelocatingcurves.
Experimentalresultsshowedthatthisdamagedetectionmethodis sensitiveandreliable
for locatingsmalldamagesinbeams.
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2.5 System Identification Using Neural Network Techniques

Sohn et al. [37], posed the process of structural health monitoring in the context

of a statistical pattern recognition paradigm. They focused on applying a statistical
process control (SPC) technique known as an "X-bar control chart" to vibration-based

damage diagnosis. Basically, a control chart provides a statistical framework for

monitoring future measurements and for identifying new data that are inconsistent with

past data. A unique aspect of their study was the coupling of various projection

techniques such as principal component analysis and linear and quadratic discrimination

operators with SPC in an effort to enhance the discrimination between features from the

undamaged and damaged structures. This approach was applied to a concrete bridge

column as it was progressively damaged. The coupled approach gave a clearer
distinction between undamaged and damaged vibration responses than by applying an
SPC alone.

Among the nonparametric identification approaches that have been receiving

growing attention, are neural networks; e.g., see [38, 39] by Agbabian et al. and Masri

et al. Research is aimed at developing an automatic monitoring method of detection of

structural damage. A study by Wu et al., [40] on the feasibility of self-organization and

learning capabilities of neural networks was carried out. They trained a neural network

onto a computer system to recognize the behavior of undamaged structures as well as

behavior of possible damaged states. This idea applied to a simple structure, when

carried out with experimental data, gave very promising results.

Masri et al. [41] trained a network with vibration measurements from a healthy

structure and a structure under different episodes of response in order to monitor the

health of the structure. The method was useful in assessing intricate mechanical

systems whose internal states are not accessible for measurements. Their proposed

method, a nonparametric structural damage detection methodology based on nonlinear

system identification was very robust.

G. Garcia et al. [42] used a neural network with statistical pattern recognition for

nondestructive damage detection (NDD). There he compared the capabilities of neural

networks and statistical pattern recognition to detect localized damage in three-

dimensional structures. Manning [41] used a neural network in conjunction with an

active member transferring function data to evaluate structural damage detection. He

suggested that the key for making the problem tractable for large problems was to

adequately identify members at high risk for damage and including enough pole / zero

information in the training of the neural network.

Extended system identification concepts were reviewed and discussed by Yao

and Natke [43]. Application of tests and computer aided modeling (TACAM) to

reliability evaluation of existing structures remains to be investigated. Finally, Aktan

et al. [44, 45] reported a comprehensive application to bridge field-testing of the
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combinedsystemidentificationapproach,with flexibility coefficientchartsfor pattern
recognition.

2.6 Concluding Remarks

A great deal of research in the past thirty years has been aimed at establishing an

effective method for health monitoring in civil, mechanical, and aerospace structures.

The ultimate goal is to determine the existence, location and degree of damage in a

structure. The development of a successful technology for structural health monitoring

has enormous potential for application in evaluation of offshore structures and bridges

subject to fatigue, corrosion, impact and earthquakes as well as buildings and aerospace
structures subject to severe loads or structural deterioration. A variety of methods for

evaluating damage in structural systems have emerged and evolved. All of these

methods require a parameter estimation algorithm to drive them; i.e., the selection of an

appropriate "measure" or suitable candidate for the damage parameters, that is

sufficiently sensitive to slight perturbation in system properties. To this end, recent

work by Saleeb et al. [46] has been directed toward the development of appropriate

global indices of this type, based on a more fundamental approach in structural
mechanics.

The novelty of this approach stems from the use of an alternative formulation in

material (vs. physical) space. These dual balance laws are revealing in that the resulting

force/source terms are directly and explicitly driven by increased heterogeneity due to

deterioration. It thus provides an ideal candidate for the damage detection parameter.

Such a damage parameter is easily computed from the measured raw data (e.g., strains,

deflections, and rotations). A large number of numerical simulations and comparison to

data have clearly demonstrated the power of this formulation under different test

conditions [47, 48]. The focus of this study is to provide further validation for the

feasibility and effectiveness of this new algorithm under realistic conditions.

3.0 THEORETICAL DEVELOPMENTS AND SIMULATION RESULTS

3.1 Introduction

i.

ii.

iii.

The overall objective in this chapter is three-fold:

To exploit the underlying mathematical structure of the damage index used in
the detection scheme.

To investigate various methods to extract its damage - sensitive features for

visualization in the context of pattern recognition paradigm, and

To present the results of validation tests (through numerical / simulations) of

these features extraction / visualization procedures.
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Thus providing the necessary background and insights needed to carry out the

applications in Chapters IV and Chapters V dealing with actual measurements from

experimental vibration recordings. With regard to items (i) and (ii) it will be gathered

from subsequent discussions that, despite its conceptual simplicity and theoretical

tractability, the damage index possess a rather intricate vectorial / tensorial character,

and as a result, it is best to approach the pattern recognition strategy from the

viewpoints of both intensity (magnitude) as well as directional properties. For instance,

the magnitude of various components of damage tensorial index are shown to exhibit

large and abrupt changes (spikes / peaks) in the presence of"true" defects. However,

taken in isolation, this representation alone is not sufficient, since also vibration

response changes due to environmental and/or operational variability (i.e., the so-called

false alarm tests, which are known to pose extreme difficulties for many existing
detection schemes) can trigger spurious patterns of this type.

In this regard, it is opportune that the complementing directional property of the

index is quite unique; i.e., the vector flow fields evaluated from the projection of the

tensor component on a (variationally - consistent C° field of) position vectors

perturbations will always be pointing in the direction of increased dissipations (or

equivalently the direction of decreased total stored energy). Consequently, for a true

defect case (irrespective of the underlying physical mechanism leading to the defect /

deterioration) the discrete set of arrows representing these vector fields on the

boundaries of the regions enclosing the defects will be directed outward. This will

persist in a consistent manner, irrespective of the mechanical response signature being

interrogated (i.e., any vibration mode or any static load testing). On the contrary, this

position will be completely or partially lost in case of false - alarm test, e.g., all vectors

will no be reversed, for extreme case of increase stiffness in a small localized region in

the structure, to point inwardly (relative to an observer situated inside the enhanced

stiffness region).

Considering the numerical studies performed in conjunction with item (iii)

above, an effort was made here to incorporate many of the complications that are

anticipated in actual experimental applications (as in later chapters IV and V). For

example, in the majority of the cases we have employed very small amounts of

simulated localized damages using relatively coarse (non-optimized) meshes in the

simulations; i.e., in a sense the inaccuracies involved in the vibration responses obtained

will be reminiscent to the effects of noise in experiments. Furthermore, realizing that

typical experimental results will be essentially incomplete; e.g., in data content when

lacking the measurements of rotational degrees-of-freedom (DOF), or in space when

only a restricted small size network or sensors are utilized, several simulations were

obtained on the basis of vertical displacements only at few discrete points (sensor

locations). This has enabled us to investigate the extent of deterioration in the accuracy

of the detection scheme in such cases. Finally, extensive testing of false alarm cases
was also included.
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3.2 Governing equations for Flexural Vibration of Shear-Flexible Plates

Consider the case of dynamic response of a homogenous, isotropic plate (with

no thermal effects, etc.). With no defects, subject to free vibration in flexure. Adopting

the well-known approach of treating free vibration, we consider for one typical mode;

i.e., the n th mode with frequency m -mn and mode shapes (w, _1, _2) - (Wn, _ln, _2n).

Here, (w, _1, _2) represent the displacement in z- direction and the rotations in the x-

and y- directions respectively. Note, that for convenience, we will drop the subscript

"n" in all the subsequent derivations. For plate flexure, we utilize a shear flexible

theory developed by Mindlin/Reissener [49] in which both bending and transverse shear

effects as well as lateral (linear) and rotary inertia are accounted for. In addition, the

following notation is introduced.

The Kinematical Quantities, namely, the curvatures and the transverse shear may

be expressed as,

• Curvatures: tc - _2qtl _2qt2 _qtl _qt2
, 1¢y - , tCxy -

x Ox2 Oy2 Oy Ox

_ Ow _ Ow
Transverse Shears: rxz ---_-+_1 ' ryz --a-}-+_2

The Statical Quantities, i.e., the Stress Resultants per unit width which taken

from the moments are expressed as,

Moments:

h

Mx - M11 = f 2CrxxZ dz
h
2

My - M22 = f 2_yyZ dz
_h

2

h

Mxy - M12 -M21 = 1 2CrxYz dz
_h

2

The Constitutive Relationships for the plate isotropy and with the assumptions

of linear-elastic response take the following form,

= D,_ (dqt2 +v dqtl)
Mll=Db(_xl +v-_-_ ) M22 c, dy dx
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r_ (l- v _(dtltl dtlt2 _
M12=M21=_bV 2 JVdy + dx j

=k 2 Gh ( =k 2 Gh (--72-2+_t2)Q1
ay

Eh3

where Db - 12(1_v2)

Finally in what follows are the well-known Conservation expressions in physical

space. That is, the balance of the linear and angular momentum in the form of first

order differential equations are given as,

dM11 dM12
÷ Q1 +Pie°2 V1 - 0 (3.1)gx dy

dM12 dM22
+ Q2 +P Ic°2 V2 - 0 (3.2)gx gy

dQ1 _-dQ2 +p hco 2 w- 0 (3.3)
gx dy

The following section presents step-by-step procedure from which we can show

that the equations (3.1), (3.2) and (3.3) are the basic equations for Defect Energy
Parameter.

3.3 The Detection Parameter Specialization

The total strain energy, W, for a thin plate can be defined as

x dV,+M dv2.a A (dd__+d@_)+Qx dw dwW (w, V1,V2) = Q2 (T+q 2)2-[Mll dx 22 dy--_'_12

(3.4)

After substituting the expressions for Mll ,M22 , M12 , Q1 and Q2 from equations (3.4)

the following expression for W is obtained
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The kinetic energy per unit area, T, which is defined as

h

2 1 vT
T= I _P vdz

h

2

(3.5)

dv2 dv1 dw
in which the velocity vector, Vis, V = [ x3 dt ' x3 dt ' d---[-]

For the special case of free vibrations: i.e., over one natural period of vibration for mode

number "n" and integrating over the thickness of the plate, T reduces to

T: 1 p COn[1 h3 (_12 +¢2 2) + hw 2] (3.6)

The first term in equation (3.6) represents the rotary inertia due to the rotations _1 and

• 2 along the x and y-axes, and the second term is the translation / transverse inertia due

to the displacement w along the z-axis.

The defect energy parameter for detection can then be formed as two components of

"forces"; i.e.,

Fx =-Fl : I ( Pl l l + P21m) dSs }Fy =- F2= Y(P121+ P22 m)ds
S

(3.7)

Where 1 and m are the direction cosines of the unit normal to "ds", and S is the length of

the perimeter curve surrounding an area of the plate middle surface, the terms Pll, P12,

P21 and P22 are given as,
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Pll = (W- T)-(Ml l _xl + M12 d_, 2 +Q1 dw

d_l I-M22 d_2 ¢-Q2 _4;___)P21 =- (M12 dx dx dx
(3.8)

dgtl +M12 dgt2 _@w_)
P12 =-(Mll---_y - --_y +Q1 dy

d_, dllt 2

P22 =(W-T)- (M12 --_-Lyl+M22
dw

dy - _2 _-f )

In the absence of any "defects" in the plate structure, the associated forces in

Eq. (3.7) must be zero and equivalently this will lead to the following condition:

Divergence of tensor P = 0 (3.9)

The above "proof"' will serve to facilitate the understanding of the abstract,

"mathematically-intriguing" nature of the damage parameter components. Note that,

the formal derivation of the proper expression for such damage parameters requires the

study of the variational symmetry of complex structures governed by coupled systems

of partial differential equations. Using the language of"finite-strain" analysis, one then

considers the inverse motion of the structure i.e., variations in material space while the

present deformed state remain unchanged.

Note, from Eqs. (3.7) to (3.9), that all fields (i.e., displacements, rotations,

strains and curvatures) are the basic parameters that convey damage information.

According to the defect energy point of view, these parameters are correlated and

contribution from each one of them makes the information about damage complete and

clear. One can certainly envision several reductions/changes in response due to the

defect energy equation, e.g., to give changes in natural frequency or some other

single/isolated quantities (related to the corresponding mode shapes) by making some

assumptions and approximations. Though useful in some cases, the ensuing detection

indices will certainly be limited in their scope for general applications. However, if

there are no approximations, all the individual contributions, such as natural frequency,

stresses, strains, deformations, bending and shear forces, etc. interact in a very complex

manner with their respective different weights and degrees of participation on a

particular excitation to produce the final damage index. It is this latter, more

comprehensive, viewpoint that is adopted here.
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3.4 Generalizations

With the above in mind, one can obtain the necessary expressions required for

the analysis of other structural vibration modes; e.g. the membrane/in plane counterpart.

In fact, a more effective approach is to consider the combined flexure/membrane

formulation as in the case of general, spatially curved shells. This indeed was the case

considered in the implementation completed for the purpose of the feasibility study for

the damage-detection-scheme.

In particular, the details of the formulation utilized here as a basis for the

numerical simulations are given in [54]; i.e., for general mixed-type, shell finite

elements. In the sequel, only a very brief outline of the schemes will be given. As to
the simulation of damage scenarios, the simplest types of defects have been considered;

i.e., in the form of "elastic" material-stiffness-degradation. Note that this approach has

also been the most popular approach in the existing literature on fault detection. Of

course, further generalization to more complex types of dissipative damage/defect

phenomena should be straightforward, both conceptually as well as mathematically.

3.5 Background on Simulation

Theoretical development of the damage index is based on the shear flexible

theory of Mindlin / Reissner [49]. This theory includes rotary inertia and shear in the

same manner as Timoshenko's [51] one-dimensional theory of bars.

Depending upon the treatment of the effect of transverse shear deformation, the

existing plate bending elements may be divided into two groups: one based on

Kirchhoffplate theory and the other on Mindlin Plate theory. In the formulation

according to Kirchhoff, finite elements derived from the principle of virtual work or the

principle of minimum total potential energy must satisfy the C 1 compatibility across

element boundaries. On the other hand, the Mindlin plate formulation, that includes the
effect of transverse shear deformation, the C 1 compatibility is not required, even an

element derived from the principle of minimum total potential energy. In addition, a

Mindlin plate-bending element can be easily extended to a degenerate type shell

element, with curved geometry. But unfortunately Mindlin plate bending elements have

a tendency to lock as the thickness of the plate becomes very small. Therefore, in

formulating a Mindlin plate-bending element, special care must be taken to eliminate

locking. A similar locking effect has been discussed by Hinton et al. [52].

The development of suitable finite element models for linear and nonlinear

analysis of plates and shells has always presented a major challenge, due to the many

theoretical intricacies involved. To overcome such intricacies, Saleeb et al. [53]

developed a simple, shear flexible, quadrilateral plate element, designated as HMPL5.

To predict the capabilities of the damage index, this quadrilateral plate element has been

used for the present computer simulations. This element has five nodes, with three
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displacementsandtworotationsateachnode.Theinteriorfifth nodeis locatedatthe
geometricalcentroidof theelement.AsMindlin platetheoryaccountsfor transverse
shearin additionto bending deformation, this shear flexible quadrilateral plate element

is valid for thin as well as thick plates.

3.6 Outlines for Shell Modeling in Numerical Simulations

Based on a modified Hellinger-Reissner variational principle, where both

displacement and strain fields are assumed independent, Saleeb et al. [50, 53, 54]

developed an effective 5-node shell element, designated as HMSH5. HMSH5 is

primarily used for damage numerical simulation. Five degrees of freedom are defined

at each nodal point, that is, three translations (u, v, w) along the Cartesian global axes

and two rotations (01, 02) about mutually-perpendicular lamina coordinates. In total the

HMSH5 element has 25 DOF. In finite element descretizations using element type

HMSH5, the displacements are interpolated in terms of nodal degrees of freedom and
can be written as

u=Nq (3.10)

where N is the interpolation matrix and q is the vector of nodal displacements of the
element where

q = [Ul, Vl, Wl, 01(1), 02 (1) .............. US, VS, Ws, 01 (5), 02(5)] T (3.11)

in which the superscript T denotes transpose of a matrix. Consequently, the

acceleration field, ii, within the element is interpolated in terms of nodal acceleration as

ii=Nit (3.12)

While strains e are approximated in terms of a strain parameter [3, as

_=P[_ (3.13)

where [3 has 19 terms, among which seven terms that belong to the 'membrane' lamina

strains (constant through thickness) and 12 terms are included in the combined bending

part. In the combined bending portion, five terms are the transverse shear strain

components. P is a (5×19) strain-interpolation matrix for element lamina strains. In

general, the entries in P are polynomial functions of natural coordinates. By utilizing

Eqs. (3.10) and (3.13), the Hellinger-Reissner functional rCRcan be written as

7CR = qTMq---_ _TH_ +_TGq- Wext (3.14)
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where

H=IPTDp dv, G=IPTDB_ dv, M=INTpNdv
v v v

In the above, D is the elastic stiffness matrix, BI is local strain displacement

Invoking the stationarity of Eq. (3.14) withmatrix and Wext is the external work done.

respect to strain yields _ in terms of q

= n-1 G q (3.15)

which is used to eliminate the strain parameters on the element level. Finally

substituting Eq. (3.15) into (3.14) results in

_R = qTMit+_qT Kq -Wext (3.16)

where the stiffness matrix for the hybrid/mixed element is given by

K=G TH -1G (3.17)

Once the stiffness and mass matrices are assembled for the entire shell, the

equilibrium equation can be obtained as

Mq+Kq=0 (3.18)

which leads to the standard generalized eigen-problem to be solved for, co and the

corresponding eigen-vector, q); e.g., subspace iteration (Bathe [55])

(K-co _ M)O=O (3.19)

3.7 Damage Scenario

When damage develops, the effective properties of the material in the damaged

area of the structure are changed. Changes in the material properties may take the form

of the modification of the elastic stiffness as well as the damping coefficient damaged

region, when considering the vibration behavior. Here a thin plate was chosen to

provide the flexural vibration signatures required in the presented simulations for

damage detection using the defect energy parameter.

For each plate, several damage scenarios are imposed. These can be a single or

multiple damage locations that may be imposed at points inside (or on the boundaries)
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the domain in the plate. For each damage location, different levels severities of severity

may be imposed. Damage severity is represented by the percentage reduction of the

plate bending rigidities, as well as shear rigidities. Throughout this report, the percent

of damage is defined as that specific percent reduction of Young's modulus (E) at the

specified damage inflicted regions. Other material properties, such as cross-section,

thickness, mass and density remain intact.

3.8 Overall Simulation Case Study

As alluded to previously, only cases involving flexural responses of the

simulated plates are considered here. Both dynamic (free vibrations) and static loading
cases are treated. For the inflicted damage scenarios, we have considered two basic

configurations of stiffness reductions, for both single and multiple locations. The first

corresponds to a case of localized (point-like) defect in one small element of the mesh

utilized, whereas in the second configuration we studies the effect of a more

"distributed" type of damage at each site; i.e., reduced elastic modulus in a patch of
elements.

For the presentation of results in each case, we have adopted the following

formats, for visualizations and subsequent pattern recognitions. That is we show,

spatial distribution on the two dimensional space of plate surface of both intensity

(magnitude of components) as well as vector-type flow fields associated with the

utilized damage detection parameter. To this end, we employ the nodal points of the

finite element mesh/grid as the counterparts of sensor (experimental measurement)

locations, e.g., leading to the very dense case when full field experiments are available

(as in results of Chapter V) or the relative coarse case (as in results of Chapter IV). In

addition, when interpreting the plots of vector fields, the convention is adopted that the

observer is situated inside the element concerned, i.e., for a true damage in this latter

element, the vectors at the boundary nodes of this element will all point outward

implying that if allowed to relocate these boundary nodes moving in the direction of the

respective (outward) force vectors will lead to increased defect areas; i.e., direction of

more dissipations.

3.8.1 Dynamic Loading Case (Modal Analysis)

The material properties, geometric dimensions and location of the boundary

conditions of the plate are shown in Fig. 3.1. The mode shapes for a square plate for a

fixed fixed and simply supported condition are shown in Fig. 3.2 and Fig. 3.3

respectively. The comparison of the change in frequencies "healthy"/undamaged

structure for the various mode shapes and mesh dimensions are shown in Table 3.1.

Figure 3.4 shows the location of the patch or the patch group that has undergone

damage. An organization chart illustrating the different cases that were first attempted

and thereon continued is shown in Fig. 3.5 for the plate damage (decrease in stiffness).

For the cases that were considered for the increased stiffness (denoted in the following
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asthepositive"falsealarm"),Fig. 3.6,only thecasewith the32× 32caseispresented
in detailedhere.Associatedresultsfor all thedynamiccasesreportedareshownin
Figs.3.7to 3.32.

Someimportantremarksregardingtheaboveprogramselectedfor thispresent
studyarein orderhere.FirstFig.3.5,(theorganizationchartfor thesimulationcases),
themesh-sizeschosen;i.e.,startingfroman8× 8, goingto 16× 16andfinally to a32×
32mesh,wasmainlyinspiredby theexperimentalsettingadoptedin the in-housetests
conductedbythesponsoringagency,NASAGlennResearchCenter.In theselatter
experiments,onlyacoarsesensornetworkwith 8× 8gridswasutilizedbecauseof the
physicallimitationsonthetestobjectsizeandtheoverlappingof accelerometers
attached.Therefore,all themeshsizesconsideredwerein orderof amultipleof the8×
8meshsuchthatoncethedatafromtheexperimentswereobtainedtheycouldbeeasily
superimposed/ mapped to the finer mesh (32 × 32) nodal points for plotting purpose.

Various case studies showing the locations of the "patch" (defect / damage

zones) are shown for "idealized" experimental data, i.e., assuming that all the response

values (e.g., vertical deflection and two rotations at each point) of the structure are

being measured. As regards to the infliction of damage, a reduction of the elastic

modulus E by 20%, for various locations on the plate, consists of four cases for each of

the boundary conditions was considered. The term "patch" in the following case would

mean a single element from a 32 × 32 mesh being damaged. A "patch group" would

mean a number of elements adjacent to each other being damaged in a 32 × 32 element

mesh forming a block which is equivalent to the single element in the 8 × 8 mesh

(Fig. 3.4). Cases such as a single or a multiple patch and a single or a multiple patch

group have been simulated to understand the effects on the corresponding damage

pattern. The damage pattern was displayed using two basic viewing techniques, the un-

smoothened (raw) spatial distribution of the intensity (magnitudes) of the components

of defect energy parameter and the energy vector flow field plots. These are shown

from Figs. 3.7 3.22 where the mesh plots show the intensity (scalar magnitudes) of

defect energy force parameter in terms of individual F1, F2 components and their

resultant F component formats as the first, second and the third column plots.

Included along with the above mesh plots, the energy vector fields showing the

overall distributions and a "zoomed" detailing near the precise the damage location in

each example are also presented for each of the cases. The energy vector field flow

phenomenon basically illustrates how the energy that is stored in a body is dissipated

due to increased damages / defects. It is always found that these vectors point from a

lower energy / weaker region to a higher energy / stronger region. Here the weaker and
stronger descriptions refer to the damaged (cracked / loss of stiffness) and the "healthy"

intact part of the plate. It is therefore, observed that there is always an outward flow of

vectors away from the region of true damage towards the healthier portion. Indeed, it is
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onlywith suchdualviewingtechniques,i.e.,spatialdistributionof damageparameter,
energyvectorfieldsandthecontourintensityplots,thatoneisableto extractuseful
damage-sensitivefeatureswithaneyetowardsestablishingapatternrecognition
paradigm.

In thisconnection,avivid casetothepointconcernsthe"falsealarm"testcase
includedin thechartof Fig. 3.6. Here,referringto theassociatedplotsin Figs.3.23
3.30,it is seenthatrelianceonlyontheintensity(magnitude)plotscanbemisleadingin
thatspuriousspikes(similarto thosein thetruedamagecasesof Figs.3.7to 3.22)are
still obtainedhere.However,combinedwith thevectorfield directionalplotsin Figs.
3.24,3.26and3.28,onceaneasilyseethatthedirectionsof thesevectorsareall
oppositetothosepertinentto thetruedamagecases(e.g.,comparewith Figs.3.8,3.10,
3.12,3.16,3.18,3.20and3.22).

Finally,asapreludeto thestudiesreportedin thenextchapter(ChapterIV) we
havealsoincludedacasesimulatingtheeffectof incompletenessin theexperimental
data. In thiscase,weconsiderasinglepatchgroupbeingdamagedin a32× 32mesh
(Fig.3.4)with thefrequency,modaldisplacementsandrotationsbeingcalculatedasin
theidealizedcase(refinedmesh).Themodalfrequencyanddisplacementsonlyfor a
"healthy"andthedamaged(with lossof stiffness)structurescorrespondingto 8× 8
meshwerethenextractedfromthesepreviousresultsandsubsequentlyappliedas
measurements,i.e.,asif no rotationsandnodisplacementsattheotherintermediate
pointsweresupplied.Thisis similarto theNASAexperimentalset-upusingonly
verticaldisplacementaccelerometersatonly49,asshownin Figs.3.31to 3.32.
Althoughsomedeteriorationin accuracyiscertainlyobviousin theresultsof the
presentdamag_<letection--code(DDC),theresultsarestill quantitativelygood.
Consideringtheratherincomplete(bothin contentandspace)natureof thedata
suppliedhere.Ontheotherhand(althoughnotshownhere),asimilarexercise,but only
lackingin rotationalDOFmeasurements;i.e.,employingfull field displacementsasin
theElectronicspecklepatterninterferometry(ESPI)of ChapterV, indicatedvery
favorableresults;i.e.,withnodiscernabledecreasein accuracy.
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Table3.1"Frequenciesof freevibrationof variousmodeshapesfor ahealthy
(undamagedplate)for variousmeshsize

Eigenvalues

Fixed- FixedPlate
8x8 16x16 32x 32 8x8

Simply- SupportedPlate
16x 16 32x 32

Mode1 1.78E+04 1.79E+04 1.82E+04 3.41E+03 3.37E+03 3.36E+03
Mode2 2.52E+04 2.54E+04 2.67E+04 9.53E+03 9.44E+03 9.43E+03
Mode3 6.86E+04 6.88E+04 7.03E+04 4.94E+04 4.89E+04 4.88E+04
Mode4 1.36E+05 1.98E+05 1.45E+05 5.82E+04 5.57E+04 5.51E+04
Mode5 1.64E+05 1.67E+05 1.94E+05 8.53E+04 8.01E+04 7.93E+04
Mode6 2.31E+05 2.32E+05 2.46E+05 1.87E+05 1.82E+05 1.81E+05

Frequency(inrad/sec)
Mode1 133.51 133.78 134.81 58.41 58.08 58.00
Mode2 158.87 159.28 163.25 97.63 97.14 97.09
Mode3 262.01 262.31 265.09 222.17 221.03 220.92
Mode4 368.98 444.65 380.40 241.14 236.09 234.83
Mode5 404.73 408.88 440.52 291.98 282.98 281.52
Mode6 480.19 482.12 495.93 432.74 426.58 425.39

Frequencyin(Hz)
Mode1 21.46 21.29 21.25 9.30 9.24 9.23
Mode2 25.98 25.36 25.29 15.54 15.46 15.45
Mode3 42.19 41.76 41.70 35.36 35.18 35.16
Mode4 60.54 59.10 58.72 38.38 37.58 37.37
Mode5 70.11 65.10 64.41 46.47 45.04 44.80
Mode6 78.93 76.79 76.42 68.87 67.89 67.70
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Fig. 3.4: Schematic Diagram of the location of the patch or patch group for the single or

multiple damage cases with the opposite edges either fixed fixed or simply supported.
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Fig. 3.5 Organization chart of the various mesh sizes and case scenarios of damage
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Case XII: Multiple Patch Damage Location

Fig. 3.6: Organization of the case scenarios having the positive false alarm (increase in
stiffness)
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Fig. 3.7: Case I: - Spatial Distribution of the Defect Energy Force Parameter showing

(for each mode) the F1, F2 and F (resultant) Force Diagrams (columns 1, 2 and 3) for

single patch damage with fixed fixed boundary conditions.
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Fig. 3.8: Case I: - Energy Vector Field Diagram for the damaged plate with overall and

zoomed plots for single patch damaged with fixed - fixed boundary conditions.
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Fig. 3.9: Case II: - Spatial Distribution of the Defect Energy Force Parameter showing

(for each mode) the F1, F2 and F (resultant) Force Diagrams (columns 1, 2 and 3) for

multiple patch damage with fixed fixed boundary condition.
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Fig. 3.10: Case Ih - Energy Vector Field Diagram for the damaged plate with overall

and zoomed plots for multiple patch damage with fixed fixed boundary condition.
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Fig. 3.1 1: Case III: - Spatial Distribution of the Defect Energy Force Parameter showing

(for each mode) the F1, F2 and F (resultant) Force Diagrams (columns 1, 2 and 3) for

single location of patch group damage with fixed fixed boundary condition.

NASA/C_2002-211685 36



• Mode1:

"-d ...T...,...I
....,.............%.....

m_

m

m

::::::::::::::::::::::::::

-- _ :::::::::::::::::::::::::

• .,......................

m_.:.:.:.:.:.:.:.:.:.:.:.:..

• ,,,, ,,,,,,,,,,,,,,,,,,,,

/

• Mode 2:

let_fKlf_fH _f_@fH_fif
i t i I J II i : I I J _ I i t I I I I I

:I : t. J5}li_tf}Z }ii::t_l+.i

_1..t..t.....?...I,_
..........................

--_:i:i:i:i:i:i:i:i:i:i:i:i:.:-_--
--_:i:i:i:i:i:i:i:i:i:i:i:i:.:-*--

f

Mode 3:

:i f I [ i _ I I _ * J I I I f I [-t _ i i

Jill I ill
:I } I _ _ J _ J J I J Jl: ::if
J_Jl_tl_JlilJ:l

! * I I$ I II I ! I _t _:*:l:llll I:

Fig. 3.12: Case III: - Energy Vector Field Diagram for the damaged plate with overall
and zoomed plots for single location of patch group damage with fixed fixed

boundary condition.
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Fig. 3.13: Case IV: - Spatial Distribution of the Defect Energy Force Parameter

showing (for each mode) the F1, F2 and F (resultant) Force Diagrams (columns 1, 2

and 3) for multiple blocks damaged with fixed fixed boundary condition.
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Fig. 3.14: Case IV: - Energy Vector Field Diagram for the damaged plate with plots for

multiple location of patch group damaged with fixed fixed boundary condition.
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Fig. 3.15: Case V: - Spatial Distribution of the Defect Energy Force Parameter showing

(for each mode) the F1, F2 and F (resultant) Force Diagrams (columns 1, 2 and 3) for

single patch damage with simply supported boundary conditions.
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Fig. 3.16: Case V: - Energy Vector Field Diagram for the damaged plate with overall

and zoomed plots for single patch damage with simply supported boundary conditions.
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Fig. 3.17: Case VI: - Spatial Distribution of the Defect Energy Force Parameter showing

(for each mode) the F1, F2 and F (resultant) Force Diagrams (columns 1, 2 and 3) for

multiple location of patch damages with simply supported boundary condition.
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Fig. 3.18: Case VI: - Energy Vector Field Diagram for the damaged plate with overall

and zoomed plots for multiple location of patch damages with simply supported
boundary condition.
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Fig. 3.19: Case VII: - Spatial Distribution of the Defect Energy Force Parameter

showing (for each mode) the F1, F2 and F (resultant) Force Diagrams (columns 1, 2 and

3) for single location of patch group damage with simply supported boundary condition.
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Fig. 3.20: Case VII: - Energy Vector Field Diagram for the damaged plate with overall

and zoomed plots for single location of patch damage with simply supported boundary
condition.
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Fig. 3.21: Case VIII: - Spatial Distribution of the Defect Energy Force Parameter

showing (for each mode) the F1, F2 and F (resultant) Force Diagrams (columns 1, 2 and

3) for multiple locations of patch group damaged with simply supported boundary
condition.
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Fig. 3.22: Case VIII: - Energy Vector Field Diagram for the damaged plate with plots

for multiple locations of patch group damage with simply supported boundary
condition.
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Fig. 3.23: Case IX: - Spatial Distribution of the Defect Energy Force Parameter showing

(for each mode) the F1, F2 and F (resultant) Force Diagrams (columns 1, 2 and 3) for

single location of patch with increased stiffness (strengthening) for fixed fixed

boundary condition.
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Fig. 3.24: Case IX: - Energy Vector Field Diagram for the strengthened plate with plots

for single location of patch damaged with fixed - fixed boundary conditions.
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Fig. 3.25: Case X: - Spatial Distribution of the Defect Energy Force Parameter showing

(for each mode) the F1, F2 and F (resultant) Force Diagrams (columns 1, 2 and 3) for

single location of patch group with increased stiffness (strengthening) for fixed fixed

boundary condition.
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Fig. 3.26: Case X: - Energy Vector Field Diagram for the strengthened plate with plots

for single location of patch group with fixed fixed boundary condition.
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Fig. 3.27: Case XI: - Spatial Distribution of the Defect Energy Force Parameter showing

(for each mode) the F1, F2 and F (resultant) Force Diagrams (columns 1, 2 and 3) for

single location of patch with increased stiffness (strengthening) for simply supported

boundary condition.
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Fig.3.28:CaseXI: - EnergyVectorFieldDiagramfor thestrengthenedplatewithplots
for singlelocationof patchwith simplysupportedboundaryconditions.
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Fig. 3.29: Case XII: - Spatial Distribution of the Defect Energy Force Parameter

showing (for each mode) the F1, F2 and F (resultant) Force Diagrams (columns 1, 2 and

3) for single location of patch with increased stiffness (strengthening) for simply

supported boundary condition.
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Fig. 3.30: Case XII: - Energy Vector Field Diagram for the strengthened plate with plots

for single location of patch group with simply supported boundary conditions.
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Fig. 3.31: Spatial Distribution of the Defect Energy Force Parameter showing (for each

mode) the F1, F2 and F (resultant) Force Diagrams (columns 1, 2 and 3) for single

location of patch group damage with fixed fixed boundary condition and incomplete
data.

NASA/C_2002-211685 56



• Mode1: • Mode2:

 4g4a4d:q4 ::4g 
..I_.L.J...I_.L.L.I...L.J...I_.L.J...I...L,J...I...I_J...I...L..J..J_..-_

44_

44_

÷

÷
÷

+
+
+
+
+
+
A_

• Mode 3: • Mode 4:

I

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
llllllllllllllllllllllllllllllll
llllllllllllllllllllllllqlllllll
III I III III I III I II1_11 I III I IIIIII
I I I I I I I I I I I I I I I I I I I\1 I I I I I I I I I I I I
IIIIlllllllllllllll_llllllllllll
I II I III III I III Itll III I III I IIIII I

IIIIIIIIIIIIIIIIIIIIIII_IIIIIIII
IIIIIIIIIIIIIII_IIIIIIIIIIIIIIII
lllllllllllllllllll_llllllllllll
IIIIIIIIIIIIIIIIIIII
I I I ,' I I I I I I I I I I I I I I It
I Ill III III I III I III I/ I I III I IIIIII

`.._..._.._..._..._..L[_._..._..._.._..._..._...[._..._...[-_..._..._`..[.._`j_

+++++++++++++4q- +
q-+
q-+
q-+
q-+

,,,,,,,,,,,,,,,,,, ,,,,,, I l
I II II IIIIII II II II II II II IIII
IIIIIIIIIIIIIIIIIIIIIIIIIII I I

IIIIIIIIIIIIIIIIIIIIIIIIIII I II II II IIIIII II II II II II II IIII

IIIIIIIIIIIIIIIIIIIIIIIIIII I IIII II IIIIII I1_11 II II II II IIII

I II II IIIIII II II II II I1"11 IIII
IIIIIIIIIIIIIIIIIIIIIIIIIII I I
I II II I I I I I I II II I I II II II I I I I

III II IIIIII II II II II I1_11 IIII

'""'"'"""""""'"' I II II II IIIIII II II II II II II IIII

I II II IIIIII II II II II II II IIII

IIIIIIIIIIIIIIIIIIIIIIIIIII
..L.I...L..J.,.I...t..J_.I..,t..J...I.:.I..J...I.:.t...[..I...I..[ J,l_.l-fill ] ]

Fig. 3.32: Energy Vector Field Diagram for the damaged plate with overall plots for

single location of patch group damage with fixed fixed boundary condition and

incomplete data.
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Table 3.2: Frequencies of the Dynamic Case Damaged Plate with reduced modulus of elasticity (0.8 E).

Modulus of Elasticity

(psi)

Fixed - Fixed Boundary Condition
Case i

2.3680E+07

Case 2

2.3680E+07

Case 3

2.3680E+07

Case 4

2.3680E+07

Case 5
Simply - Supported Boundary Condition

Case 6 Case 7 Case 8

2.3680E+07 2.3680E+07 2.3680E+07 2.3680E+07

Eigenvalues
Mode 1 1.7825E+04 1.7780E+04 1.7803E+04 1.7824E+04 3.3634E+03 3.3626E+03 3.3494E+03 3.3347E+03

Mode 2 2.5237E+04 2.5147E+04 2.5194E+04 2.5234E+04 9.4253E+03 9.4239E+03 9.4055E+03 9.3842E+03

Mode 3 6.8633E+04 6.8173E+04 6.8409E+04 6.8620E+04 4.8795E+04 4.8786E+04 4.8628E+04 4.8455E+04

Mode 4 1.3610E+05 1.3475E+05 1.3544E+05 1.3605E+05 5.5127E+04 5.5107E+04 5.4859E+04 5.4572E+04

Mode 5 1.6377E+05 1.6297E+05 1.6339E+05 1.6374E+05 7.9237E+04 7.9223E+04 7.9054E+04 7.8855E+04

Mode 6 2.3048E+05 2.2726E+05 2.2892E+05 2.3038E+05 1.8094E+05 1.8092E+05 1.8049E+05 1.7999E+05

Frequency (in rad/sec)
Mode 1 133.5105 133.3404 133.4269 133.5069 57.9950 57.9875 57.8741 57.7467

Mode 2 158.8629 158.5786 158.7255 158.8537 97.0841 97.0767 96.9821 96.8719

Mode 3 261.9799 261.0992 261.5510 261.9537 220.8966 220.8752 220.5178 220.1255

Mode 4 368.9135 367.0875 368.0224 368.8504 234.7911 234.7486 234.2207 233.6071

Mode 5 404.6907 403.6931 404.2200 404.6534 281.4904 281.4652 281.1657 280.8112

Mode 6 480.0841 476.7189 478.4509 479.9799 425.3702 425.3465 424.8378 424.2543

Frequency in (Hz)
Mode 1 21.2489 21.2218 21.2356 21.2483 9.2302 9.2290 9.2110 9.1907

Mode 2 25.2838 25.2386 25.2620 25.2824 15.4514 15.4502 15.4352 15.4176

Mode 3 41.6954 41.5552 41.6271 41.6912 35.1568 35.1534 35.0965 35.0341

Mode 4 58.7144 58.4238 58.5726 58.7044 37.3682 37.3614 37.2774 37.1797

Mode 5 64.4085 64.2497 64.3336 64.4026 44.8006 44.7966 44.7489 44.6925

Mode 6 76.4078 75.8722 76.1478 76.3912 67.6998 67.6960 67.6150 67.5222
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Table 3.2: Summary of the Frequencies of the Dynamic Case Damaged Plate with increased Modulus of Elasticity (1.2 E).

Fixed - Fixed Condition Simply - Supported Condition

Case 9 Case 10 Case 11 Case 12

Modulus of Elasticity 3.5520E+07 3.5520E+07 3.5520E+07 3.5520E+07

(psi)

Eigenvalues
Mode i 1.7827E+04 1.7845E+04 3.3650E+03 3.3768E+03

Mode 2 2.5243E+04 2.5282E+04 9.4281E+03 9.4455E+03

Mode 3 6.8659E+04 6.8849E+04 4.8813E+04 4.8948E+04

Mode 4 1.3618E+05 1.3672E+05 5.5164E+04 5.5387E+04

Mode 5 1.6383E+05 1.6416E+05 7.9263E+04 7.9419E+04

Mode 6 2.3066E+05 2.3193E+05 1.8098E+05 1.8132E+05

Frequency (in rad/sec)
Mode i 133.5171 133.5861 58.0088 58.1099

Mode 2 158.8807 159.0041 97.0982 97.1882

Mode 3 262.0295 262.3906 220.9366 221.2428

Mode 4 369.0300 369.7533 234.8696 235.3448

Mode5 404.7590 405.1627 281.5367 281.8137

Mode 6 480.2745 481.5861 425.4134 425.8223

Frequency in (Hz)
Mode i 21.2499 21.2609 9.2324 9.2485

Mode 2 25.2866 25.3063 15.4537 15.4680

Mode 3 41.7033 41.7608 35.1632 35.2119

Mode 4 58.7330 58.8481 37.3807 37.4563

Mode 5 64.4194 64.4836 44.8080 44.8520

Mode 6 76.4381 76.6468 67.7066 67.7717



3.8.2 Static Loading Case

Referring to the same boundary conditions, material properties and geometric

dimensions of the plate as given in Fig. 3.1, concentrated loads were applied and the

Energy Vector Field Diagrams were plotted for the various statical test cases studied for

both the reduced and increased modulus of elasticity. These include the following

examples:

• Case I: Fixed Fixed Plate with small area of single damage location at (15.47,

6.53) from the origin. Fig. 3.28 shows the plot for the mesh for the damaged plate with

1000 unit concentrated loading.

• Case II: Fixed Fixed Plate with large (block) area of single damage location at

(15.125, 6.875) from the origin. Fig. 3.29 shows the plot for the mesh for the damaged

plate with 1000 unit concentrated loading.

• Case III: Fixed Fixed Plate with small area of single damage location at

(15.47, 6.53) from the origin. Fig. 3.30 shows the plot for the mesh for the damaged

plate with 1000 unit concentrated loading and increased modulus of elasticity.

As can be seen in Figs. 3.33 3.35, similar patterns as shown in the dynamics

case, also exist here. In particular, only near the inflicted regions are the magnitudes of

damage parameters significant, and directions for the false alarm cases are opposite to

the true damage scenarios.

.......... iiiiiiiiiiiiiiiiii_iiiiiiii!ii!iiiiiiii[iiiiiiiiiiiiiiiiiiii

Fig. 3.33: Energy Vector Field Diagram for the damaged plate with overall and zoomed

plots for single element statical loading damaged with fixed - fixed boundary conditions
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Fig. 3.34: Energy Vector Field Diagram for the damaged plate with overall and zoomed

plots for Large (block) area of elements with statical loading damaged with fixed - fixed

boundary conditions
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Fig. 3.35:Energy Vector Field Diagram for the damaged plate with overall and zoomed

plots for single element damaged with statical loading, increased modulus of elasticity

and fixed - fixed boundary conditions

3.9 Conclusion

Considering the cases for true inflected damages in the dynamics of free

vibration, the defect energy force intensity plots were consistent with the Energy Vector

Field Diagrams for the first three modes. As the mode numbers increased, the accuracy

of mesh diagram showing the spatial distribution of the intensity of the defect energy

force somewhat deteriorated exhibiting results are a bit noisy. This was in total contrast

when compared with the energy vector field diagrams, wherein the energy flow pin -

pointed exactly the area of the damage. However, when considering also the possibility

of false alarm testing, it has been clearly demonstrated that only the simultaneous use

of the dual representation in tandems, i.e., both magnitudes and directional properties,

will lend to a successful damage detection and localization strategy. This will confirm

further for the statical loading cases where excellent results were again obtained from

the vector field plots.
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It hasbeenemphasizedthatthereis alwaysaninherentdirectionalpropertyfor
theflow of energydissipationin thesystem.In otherwords,acrackleadingto a
deterioration/reductionin thematerialproperties,will resultin vectorsflowingfromthe
weaker(cracked)regionto thestronger(undamaged)part. Similarly,a false alarmin
theformof athickeningor stiffeningof thestructurewouldcausethesevector
directionsto completelyreverse.Therefore,theseverelimitationsof manyexisting
detectionschemesof scalartype(relyingonlyonintensity/magnitudes)will be
eliminatedentirely.

Finally,anticipatingtheincompletenessof theexperimentaldata(e.g.,as
providedfromtheexperimentsconductedatNASA GlennResearchCenter),theDDC
wasmodified. To operatewith atruncatedsetof datahavingno rotationalDOFand
with onlyarathercoarsenetworkof sensorsfor theverticaltranslations.Evenin these
moredifficult cases,thealternativedualrepresentationsof intensityandvectorfield
plotshaveprovedquiterobust,i.e.,inpredictingquiteaccuratelythelocationsof
inflecteddamages.

4.0 EXPERIMENTAL VERIFICATION--_ONVENTIONAL MEASURING

MODAL TESTING WITH ACCELEROMETER IN A

COARSE - SENSOR NETWORK

4.1 Introduction

Damage detection is a challenging problem that is under vigorous investigation

by numerous research groups using a variety of analytical and experimental techniques.

The structural geometry, material properties, boundary conditions and topology of the

test structure, etc. all influence the choice of a suitable method for damage detection.

The damage detection procedure for a structure depends upon the level and extent of

damage, available knowledge concerning the ambient dynamic environment,

sophistication of available computing resources, complexity of the detection scheme,

selected threshold level for detecting perturbations in the system condition and depth of

knowledge concerning the failure modes of the structure.

One of the most important criterion to be fulfilled in any damage detection

method based on a theoretical/computational model is the robustness of the method to a

real life laboratory setup. The effectiveness of the method in consideration will be

assessed based on its ability to determine the location of damage when provided with

the experimental measurements (e.g., strains, deflections and rotations) and accounting
for the various environmental factors and human errors.
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4.2 Background About the Experiments

The experimental results reported here were obtained by NASA (National

Aeronautics and Space Administration) Glenn Research Center, as a part of a test

program aiming at the assessment of merits and/or limitations of various experimental

alternatives used in conjunction with global detection based on mechanical response

measurements. This part was conducted under the supervision of S.M. Arnold, Life

Prediction Branch and Sergey Samorezov, Structural Dynamics Laboratory. More

specifically, three experiments with varying degree of damage were provided. These

experiments were of the free vibration mode type with the boundary conditions of the

structure (square plate) being fixed (clamped) and free on each of its two opposite sides.

The "fixed" boundary conditions were experimentally approximated by high-tension

bolted connections, see Fig. 4.1. The data for each test specimen is termed a "Set", i.e.,

data for the first, second and third experiments were termed "Setl", "Set 2" and "Set3"

respectively.

Each set as shown in Fig. 4.2, was divided into states "X", "Y" and "Z" each of

these states is represented by a pair of experiments assessing the structural condition of

the specimen at a given time. Two experiments for each state were conducted to

minimize the effect of data noise caused by environmental, machine and human factors.

As provided to us, the unknown "damage" state in a given specimen may or may not

have changed between states. Each state "X" contains data for experiment "Xa" and

"Xb", "Y" contains data for experiment "Ya" and "Yb", "Z" contains the data for

experiment "Za" and "Zb", note that there was absolutely no change in the specimen

during the same sub-set of a given state. Damage may or may not have been inflicted

on the specimen between states "X" and "Y" and between states "Y" and "Z". The "X"

state of an experimental set was the baseline or the "healthy" plate experiment. The

Damage Detection Code (DDC) was always executed with the "X" versus the "Y" state

and the "X" versus the "Z" state. The main objective in the present exercise is to

predict the potential sites of inflected damage (if any).

Date, time and the temperature of the laboratory were all recorded during each

of the experiments. Subsequent to submittal of our "predictions", further details on the

experiments were provided to us for more detailed reporting purposes. This includes

the size of damage (holes drilled through the plate) and some of their respective

locations was all measured and are shown in Fig. 4.5.
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- Accelerometers

- Simply Supported (Really Fixed)

Fig. 4.1: Experimental Plate at NASA Glenn showing the clamping, the location of the

accelerometer and geometry of the plate.
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Fig. 4.2: Organization chart of the experiments conducted in the laboratory



4.3 Experimental Setup

A 22-inch (in nominal size) square, INCONEL 718, plate supported on two

opposite edges and free on the other edges was subjected to a random excitation of

0.032g RMS (root mean square) with a frequency content of 10 500 Hz. Forty nine

PCB 333A32 accelerometers were used to measure the vertical displacement of the

plate and no rotations. These accelerometers were all within standard calibration

marked and numbered as shown in Fig. 4.1. The origin of all measuring points being

taken at the lower left hand comer of the plate. Fig. 4.3 shows a close up view of the

undamaged plate with all the accelerometers attached. Initially, the fixture was

designed to be with simple support conditions but due to the thinness of the pate it

experienced more like a fixed boundary condition.

All data was acquired using the software package IDEAS developed by SDRC

(Structural Dynamics Research Corporation). Random excitation was imposed via an

electro-dynamic shaker table (LING 4022) with 0.032g RMS force. Time response data

was collected and then post processed using IDEAS to obtain the frequency response

functions (FRF) per location and the corresponding mode shapes. Repeated

measurements were taken using the undamaged plate during a series of loosening and

retightening of the supports in an effort to achieve some repeatability of results. There

was always a drift in the frequency and mode shape measurements and this was never
specifically determined.

The damage inflicted to the plate was in the form of holes of varying sizes from

0.125 in. to 1.6875 in. diameter with the smaller ones achieved through the use of a

standard metal drill bit and the larger sized holes were obtained using a screw_unch

device. Due to the excessive levels of variability/noise in the measurement of data (as

documented in the forthcoming report [61 ] only the results of 1.125 in. and 1.6875 in.

diameter hole damage test results were provided. In all there were 48 gages that were

placed on the plate such that they formed an 8 × 8 mesh to only measure the modal

vertical displacements (no rotations). These points were then superimposed/mapped to

the nodal points on a refined 32 × 32 finite element mesh for processing the results.
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Fig. 4.3: UndamagedPlatewith the accelerometersattachedin the NASA Glenn
laboratory.

Fig. 4.4: Sideview of the supportconditionswith the plateandthe accelerometers
attached.
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(a) (b)

(c) (d)

Fig. 4.5: (a) 1.125-in. diameter hole (b) 1.375-in. diameter hole (c) 1.6875-in. diameter

hole (d) overall view of the damaged plate with the accelerometer attached.
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4.4 Processing the Data

The experimental data as obtained from NASA Glenn contained the modal

displacement, frequency, damping coefficient, etc., from the accelerometers attached to

the plate as shown in Fig. 4.1. The experiments were a first attempt to pave the way for

in-house capabilities of measurement and data analysis for modal parameters,

displacements, frequencies, slopes, etc., at NASA Glenn. For the damage detection

code (DDC), only the eigenvalue (frequency) and the normalized modal displacements

were used. The entire process of calculating and running the DDC was automated using

the UNIX scripting language and dynamic file editing. A flow-chart of the process is

shown in Fig. 4.2.

The raw experimental data sets for a given specimen state (e.g., "Xa" or "Xb")

were searched for the missing accelerometer data. This is to ensure that all the data for

the points shown in Fig. 4.1 present in "Xa" had to be present in "Xb" and vice versa.

If, due to some high noise or an error, the measurement data is deleted for a node, it will

also be deleted from the other file, this maintains consistency in finding the threshold

value as discussed below. The pair of resulting data files were then normalized to the

maximum value of each file (Master). Each file is also normalized based on the value

at the location of the maximum value in the other file of the pair (Slave). This results in

four new files, for example, "Xa master" and "Xb Slave" and "Xb master" and
"Xa Slave" combinations.

The "Varsub" (variable substitution) routine uses these normalized files and

builds the boundary condition files and two DDC input files. The DDC input files with

("Xa master" and "Xb slave") and ("Xb master" and "Xa slave") combinations

prepared in this process were run through the DDC to obtain a threshold value from the

nodal damage forces. The threshold value is the difference between the nodal damage

force values of the ("Xa master and Xb slave") and ("Xb master & Xa slave")

run of the DDC. A file containing the average normalized accelerometer data is then

prepared from the normalized unique grid points of each master "Xa" and "Xb" such
that one experimental for state "X" file was obtained. This file is then renormalized to
its maximum value.

The same steps as mentioned above were repeated for state "Y" ("Ya" and

"Yb") and state "Z" ("Za" and "Zb") resulting in a file containing averaged normalized

accelerometer data for states and their respective threshold values. Since it was known

state "X" represented the "healthy" plate and the "Y" or "Z" states were possibly

damaged, the DDC was executed such that state "X" was considered as the reference

state. The results obtained were then processed and are shown in the next article to

predict the damage. This automated process was carried out for only the first three

modes since, as stated earlier; it was observed that the higher modes gave prohibitively

noisy results.
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EXPERIMENTS

RENORMALIZING THE

AVERAGED FILES FOR EACH

X, Y AND Z SUB-SETS

1
FINAL RUN OF DDC &

PROCESSING OF RESULTS

Fig. 4.6: Flowchart of the automated damage detection process.
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4.5 Processing the Results and Observations

The observations herein are of a descriptive nature as opposed to being precise

and quantitative. This is due to the fact there is a lot of variability/noise in the measured

data. The Tables 4.1, 4.2, 4.3 and 4.4 provides a summary of the data obtained for the

exact fixed-fixed plate and the different experimental sets that were conducted.

Adopting the methods detailed in Chapter III, the spatial distribution of the defect

energy force parameter and the energy vector field diagrams were plotted for each of

the experimental sets. Conclusions were made after comparing both the energy vector

field diagrams and the spatial distribution of the defect energy parameter. These are

summarized in the form of a schematic block diagram summarizing the level of

certainty and sites for possible damage. For each individual Set I, II and III, assessment

of the level of noise was based on a restricted comparison of the two repeats of

reference measurements (e.g., "Xa" and "Xb").

To provide some feel for the rather severe levels of variabilities and noises in the

above experimental results, we refer to some of the comparisons in Tables 4.2 to 4.4.

For instance, as it turns out Set I corresponds to a false alarm test but all the cases

indicated sizable reductions in the vibration frequencies in al the five vibration modes

reported. Such a consistent and relatively large reduction may certainly cause some

of the conventional detection schemes, using frequency data alone, to be trapped into
falsely detecting "damage". On the other hand, for the true damage in Set II for "Y"

and "Z" measurements relative to the reference in X of the same Set II, the artificial

increases in frequencies for readings of mode 4 and 5 in all columns Set II "Ya", "Yb",

"Za" and "Zb" will certainly prove very perplexing for these scalar (frequency-only)

detection methods. The same confusing trends also existed in the readings of the true

multiple location damage cases of Table 4.4. Furthermore, although certainly lacking in

terms of the size of experimental samples for any rational statistical analysis to be of

great value, some simple (regression/statistical noises) analyses of these data are given

in Appendix A.

At the end of processing each experimental Set, a conclusion with regard to the

damage location and amount was given and submitted to the NASA Glenn Research

Center. The feedbacks received from them provided confirmation to the results and

observations. For "Set 1", it was observed that there was no exact damage to the plate

and was clearly seen of a case of false alarm test case. For Set II and Set III, the

predicted damage location was in very close proximity to the true location of inflected

damages in each case. Note that Set III actually uses a reference state "X" that by itself

included initial damage from the end of damage scenarios in Set II. It has been shown

that the damage detection code, even with very noisy data, consistently predicted the

location of damage.
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Table4.1:Exactfrequenciesandeigenvaluesof thefixed - fixedplate.

Mode1
Mode2
Mode3
Mode4
Mode5

Fixed - Fixed Plate

Frequency

(Hz) (rad/sec)

21.25 133.57

25.29

41.70

58.72

64.41

Eigenvalue

1.7840E+04

158.94 2.5261E+04

262.11 6.8702E+04

369.13 1.3625E+05

404.89 1.6394E+05

Table 4.2: Frequencies and eigenvalues of"Set 1"

Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

Set 1 Xa Set 1 Xb

Frequency

(Hz) (rad/sec)

23.73 149.16

29.27

43.11

55.21

57.55

Eigenvalue Frequency Eigenvalue

2.2249E+04

183.98 3.3850E+04

270.98 7.3429E+04

347.03 1.2043E+05

361.74 1.3086E+05

(Hz)

23.15

29.02

43.00

55.07

57.03

(rad/sec)

145.51 2.1174E+04

182.41 3.3274E+04

270.29 7.3054E+04

346.15 1.1982E+05

358.47 1.2850E+05

Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

Set 1 Ya Set 1 Yb

Frequency

(Hz) (rad/sec)

22.67 142.50

28.36

42.79

54.08

56.69

Eigenvalue Frequency Eigenvalue

2.0305E+04

178.26 3.1778E+04

268.97 7.2343E+04

339.93 1.1555E+05

356.34 1.2698E+05

(Hz)

22.38

28.28

42.71

53.72

56.58

(rad/sec)

140.67 1.9789E+04

177.76 3.1599E+04

268.46 7.2072E+04

337.67 1.1402E+05

355.65 1.2648E+05
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Table4.3:Frequenciesandeigenvaluesof"Set 2"

Mode1
Mode2
Mode3
Mode4
Mode5

Set 2 Xa Set 2 Xb

Frequency

(Hz) (rad/sec)

24.51 154.06

30.42

43.91

51.98

54.87

Eigenvalue Frequency Eigenvalue

2.3735E+04

191.21 3.6562E+04

276.01 7.6179E+04

326.73 1.0675E+05

344.90 1.1895E+05

(Hz)

23.87

30.91

44.23

51.16

53.66

(rad/sec)

150.04 2.2512E+04

194.29 3.7749E+04

278.02 7.7294E+04

321.58 1.0341E+05

337.29 1.1377E+05

Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

Set 2 Ya Set 2 Yb

Frequency

(Hz)

23.26

29.71

43.70

52.94

55.26

Eigenvalue Frequency Eigenvalue

(rad/sec)

146.21 2.1376E+04

186.75 3.4875E+04

274.69 7.5452E+04

332.77 1.1073E+05

347.35 1.2065E+05

(Hz)

23.25

29.74

43.73

52.88

55.12

(rad/sec)

146.14 2.1358E+04

186.94 3.4945E+04

274.87 7.5556E+04

332.39 1.1048E+05

346.47 1.2004E+05

Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

Set 2 Za Set 2 Zb

Frequency

(Hz)

23.73

29.27

43.11

55.21

57.55

Eigenvalue

(rad/sec)

149.16 2.2249E+04

183.98 3.3850E+04

270.98 7.3429E+04

347.03 1.2043E+05

361.74 1.3086E+05

Frequency

(Hz)

23.15

29.02

43.00

55.07

57.03

Eigenvalue

(rad/sec)

145.51 2.1174E+04

182.41 3.3274E+04

270.29 7.3054E+04

346.15 1.1982E+05

358.47 1.2850E+05
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Table4.4:Frequenciesandeigenvaluesof"Set 3"

Mode1
Mode2
Mode3
Mode4
Mode5

Set 3 Xa Set 3 Xb

Frequency

(Hz) (rad/sec)

22.67 142.50

28.36

42.79

54.08

56.69

Eigenvalue

2.0305E+04

178.26 3.1778E+04

268.97 7.2343E+04

339.93 1.1555E+05

356.34 1.2698E+05

Frequency

(Hz) (rad/sec)

22.38 140.67

28.28

42.71

53.72

56.58

Eigenvalue

1.9789E+04

177.76 3.1599E+04

268.46 7.2072E+04

337.67 1.1402E+05

355.65 1.2648E+05

Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

Set 3 Ya Set 3 Yb

Frequency

(Hz)

23.49

28.33

41.39

54.34

55.42

Eigenvalue

(rad/sec)

147.65 2.1801E+04

178.07 3.1710E+04

260.17 6.7686E+04

341.57 1.1667E+05

348.35 1.2135E+05

Frequency

(Hz)

23.42

28.24

41.30

54.83

56.05

Eigenvalue

(rad/sec)

147.21 2.1671E+04

177.51 3.1509E+04

259.60 6.7392E+04

344.65 1.1878E+05

352.31 1.2413E+05

Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

Set 3 Za Set 3 Zb

Frequency

(Hz) (rad/sec)

24.56 154.38

28.76

42.06

55.40

59.04

Eigenvalue

2.3832E+04

180.78 3.2680E+04

264.38 6.9895E+04

348.23 1.2126E+05

371.11 1.3772E+05

Frequency

(Hz) (ra_sec)

24.31 152.81

28.70

41.94

55.25

58.51

Eigenvalue

2.3350E+04

180.40 3.2544E+04

263.62 6.9497E+04

347.29 1.2061E+05

367.78 1.3526E+05
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Fig. 4.7: "Set 1" Spatial distribution of the defect energy force parameter for modes 1

to 3 showing the F h F2 and F (resultant) Force Diagrams (columns 1, 2 and 3) for the

raw spatial distribution of states "X" and "Y" experiments.
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• Mode 1:

• Mode 2:

• Mode 3:

Fig. 4.8: Energy Vector Field Diagrams for "Set 1", modes 1 to 3 for "X" and "Y".
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Fig. 4.9: Schematic Descriptive Block diagram for the "Set 1" experiment after

processing with the color scheme. All vector field diagrams showed no

apparent/consistent pattern, thus strongly suggesting a false alarm test case.
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Fig. 4.10: "Set 2" Spatial distribution of the defect energy force parameter for modes

1 to 3 showing the F1, F2 and F (resultant) Force Diagrams (columns 1, 2 and 3) for the

raw spatial distribution of states "X .... Y" and "Z" experiments.
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Fig. 4.10 (Continued): Set 2 Spatial distribution of the defect energy force parameter

for modes 1 to 3 showing the F1, F2 and F (resultant) Force Diagrams (columns 1, 2 and

3) for the raw spatial distribution of states "X", "Y" and "Z" experiments.
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• Mode3 (Y Z):

r_S2 2 Y Z S ra_ Ft r-S2 2 Y Z a ra_ F2 mSe_2_y_Z_S_I__F

N _ D.,

Fig. 4.10 (Concluded): "Set 2" Spatial distribution of the defect energy force

parameter for modes 1 to 3 showing the F1, F2 and F (resultant) Force Diagrams

(columns 1, 2 and 3) for the raw spatial distribution of states "X", "Y" and "Z"

experiments.
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Color Scheme

Highest probability of damage at most 80% certainty

relative to noise levels in Set II "Xa" and "Xb"

= Less probability of damage (no more than 10% certainty)

57 58 59 60 61 62 63 64

49 50 51 52 53 54 _ 55 w 56

41 42 43 44 45 46 47 48
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25

17

37NN 40
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18 i9 i 20 21 22 23 24

10 11 i 12 13 14 15 16
i

2 3 4 5 6 7 8

Fig. 4.12: Schematic Block diagram for the "Set 2" experiment after processing with the

color scheme (The actual location of the damage is shown in dotted circles). Together

with the vector field plots in Fig. 4.1 1, the strong indication exists for a single - location

damage near shaded blocks 30, 31, 38 and 39.
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Fig. 4.13: "Set 3" Spatial distribution of the defect energy force parameter for modes

1 to 3 showing the F1, F2 and F (resultant) Force Diagrams (columns 1, 2 and 3) for the

raw spatial distribution of states "X", "Y" and "Z" experiments.
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Fig. 4.13 (Continued): "Set 3" Spatial distribution of the defect energy force

parameter for modes 1 to 3 showing the F1, F2 and F (resultant) Force Diagrams

(columns 1, 2 and 3) for the raw spatial distribution of states "X", "Y" and "Z"

experiments.
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Fig. 4.13 (Concluded): "Set 3" Spatial distribution of the defect energy force

parameter for modes 1 to 3 showing the F1, F2 and F (resultant) Force Diagrams

for (columns 1, 2 and 3) the raw spatial distribution of states "X", "Y" and "Z"

experiments.
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Fig. 4.14: Energy Vector Field Diagrams for "Set 3", modes 1 to 3 for states "X", "Y"

and "Z" experiments.
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Fig. 4.15: Schematic Block diagram for the "Set 3" experiment after processing with the

color scheme (The actual location of the damage is shown in dotted circles). Together

with vector field plots of Fig. 4.14, a strong indication exists for multiple-location

damages near shaded blocks 22 to 29 and 12 to 35.
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4.6 Conclusions of the Experimental Verification

"Set 1": This was a repeat of the vibration signatures of the same state of

damage but at different collection times. In this case, no change in conditions between

states "X" and "Y" is observed. Thus, there is no damage indicated here. It was found

that this case was a representation of the thermal effects in the laboratory. A time

difference of one day existed between states "X" and state "Y". The specimen remained

in the test fixture during this time but no additional damage was imposed. The

schematic block diagram in Fig. 4.9 essentially reflects the presence of extensive noise
in this "false alarm" case

"Set 2": This case indicates a single damage site that was introduced

between accelerometers 15, 16, 23 and 24 see Fig. 4.1. The baseline state "X", did not

have any damage. The state "Y" had a damage of size 1.125" diameter as shown in

Fig. 4.5. In state "Z" the hole imposed in state "Y" was increased to 1.6875 in. There

was a strong indication (with the Highest certainty) of a damage located on the plate

sector defined between accelerometers 30, 31, 32, 38, 40, 46, 47 and 48, also refer to

blocks 30, 31, 38 and 39 in Fig. 4.12. This location was clearly in the correct quadrant

of the plate though it was slightly lower than the actual damage location. There is some

damage detected with less certainty in the area bounded by blocks 11, 12, 19 and 20 in

Fig. 4.12.

"Set 3": Here the same diameter hole that was present as in "Set 2", state
"Z" between accelerometers 15, 16, 23 and 24 existed in the state "X" as the baseline

condition. A new damage site was then introduced at accelerometer locations 29, 30,

37 and 38 of size 1.6875 in. diameter and for state "Y". In state "Z", two more holes

were made simultaneously of diameter 1.375" and 1.6875". The first of these holes was
introduced was introduced between accelerometers 32 and 40 and the other between

accelerometers 55, 56, 63 and 64. Our conclusion stated that this set was certainly a

case of multiple damage shown at two locations even though three more holes were

induced. Note that the baseline state "X" which had the damage, this information was

unknown at the time of the analysis. The first position is strongly indicated (highest

possibility of a damage) at or around the location of block 12. The location of the

second damage is bounded by the sites of blocks 22, 23, 30, 31, 38 and 39 as in

Fig. 4.15.

These results were officially submitted to NASA Glenn and were found to be in

close proximity with the actual experimental documentation. All the processing of the

measured data was without any prior knowledge of the damage sites or sizes. The effort

has shown that the damage detection method is proficient in detecting damage locations

based on modal displacements. The focus of future work will be to obtain better

determination of the site of the damage.
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5.0 FULL FIELD EXPERIMENTAL INVESTIGATIONS---THE USE OF
ELECTRONIC SPECKLE INTERFEROMETRY TECHNOLOGY

AND EXTENSIVE PATTERN RECOGNITION TECHNIQUES
FOR DEFECT LOCALIZATION

5.1 Introduction

Several newly emerging technologies are being investigated in recent years,

with emphasis on providing full field measurements of the complex mechanical

response signatures of continuous systems. An example of this is provided by the so

called Electronic Speckle Pattern/Shearing Interferometry (ESPI and ESSPI). The data

obtained from these technologies provide an excellent vehicle to assess the defect

detection/localization capabilities of the global scheme under study in the present

report. To this end, this chapter presents results of a detailed investigation of this type,

i.e., utilizing the case of vibrating cracked plate, where the damages are actually

produced by the crack propagation along the length of the fixed boundary of the plate

(the problem has three sides free and the remaining fourth straight boundary of the plate

is totally "clamped"). The complexity of this problem stems from two main factors.

Firstly, with one of changed damage conditions of the plate corresponding to only the

coordinates of the targeted damaged locations being frozen with the progression of the

single line crack, methods utilizing solely the frequency changes to localize damage

will basically fail here. Furthermore, any of the existing detection schemes using such

notions as changes in "isolated" slopes, curvatures, flexibility of a mode shape will also

have extreme difficulties (if at all possible) since (as will be shown later) the significant

effects of a propagating crack along a single support line will trigger very large changes

in the individual modes almost everywhere (and not only at the location of the increased

damages only) and this will occur essentially with a random character, i.e., regions far

away from the true propagating crack may be affected most depending on the particular

mode being interrogated. The study of vibration behavior of plates with a crack is a

problem of great practical significance, especially for the experimental verifications of

theoretical proposals. Indeed, we note here that only a few papers have been published

on the vibration analysis of a "finite-domain" cracked plate.

The traditional way of measuring vibration frequencies and damping of a single-

degree-of-freedom (SDOF) system is by using a contact-type instrument, such as an

accelerometer, to give time histories of the vibration signals. For a multiple-degree-of-

freedom (MDOF) system such as a continuous plate, if the natural frequencies are well

separated (without too much mode coupling interaction), the same method can be

applied.
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As far as the modal analysis is concerned some of the disadvantages of using
accelerometer-based measurements are:

• Contact and point wise - the point-by-point measurement takes time, thus

there is always an uncertainty of whether there is a change of vibration

behavior of the structure during the modal testing.
• The finite size of the accelerometer instrument would also limit the

dimensions of the tested structure.

Electronic speckle pattern interferometry (ESPI) is a full field non-contact

method capable of analyzing the vibration of complex mechanical structure. This

emerging new technology has many advantages over the conventional contact

accelerometer method, including the following:

• Resonant frequencies and the corresponding mode shapes can be obtained

simultaneously from the experimental measurements.

• Non-contact technique for measuring vibration of structures in hazardous

conditions, e.g., elevated temperature, high voltage, and specimens subjected

to toxic reactions, etc.

• Tremendous reduction in the environmental and experimental machinery
noise measurements.

• Short duration of the actual experiments in the order of two hours.

Contour maps of vibration mode shapes can be measured and plotted by time

average of ESPI, or their vibration amplitude gradients can be measured by time

average of ESSI (Electronic Speckle Shearing Interferometry) that has a similar

principle as compared to the ESPI. This method has the advantage of being insensitive

to rigid body vibration modes. In structures subjected to complex loading it might be

necessary to use both these sets of measurements. The only limitation is the lead time

needed to set up the equipments for measuring these details. However, once operational,

this set up can provide for very fast and large-area scans of accurate measurements.

(e.g., in the order of a micrometer of translations of rather elaborate structural

deformation modes) in a matter of minutes or at most very few hours.

Yang et al. [56] presented the development of this method both in technique and

theory. The optical setups for measuring in-plane and out-of-plane displacements and

strains, as well as their applications were shown by applying phase shifting techniques.

The technique proposed by them gave wider and more controllable range sensitivity,

thus allowing the measurements of displacement gradients corresponding to larger
deformation.

Wong et al. [57] used a time-averaging electronic speckle shearing

interferometer (ESSI) for modal damping measurements. They compared the damping

factor of a cantilever beam by the ESSI method and the accelerometer technique. The

main advantage of this method was the simplicity of the experimental setup and the
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measurementprocedure.Theyhadproposedtheuseof threeinterferogramswhereas
hundredsweresaidto berequiredin themethodsproposedearlier.Thelimitationof
theirmethodwasthattherelativephasebetweenthepointsin acomplexmodeis
dependingonthespatialdomain,thuscausingsomeuncertaintiesin resolvingthe
directionsensitivity.

Fringepatternsdepictingtheout-of-planedisplacementsandslopeof deformed
objectsareobtainedusingdigital specklepatternanddigital speckleshearing
interferometerrespectively.Ng [58] showedthattheoriginaldesignfor digital speckle
shearinginterferometrywasableto measuretheobjectssubjectedto complexloads
necessaryto produceboththedataasstatedabove.With smallmodificationshealso
showedtheout-of-planedisplacementmeasurements.

To increasethevisibility of thefringepatternandto reducetheenvironmental
noisesimultaneously,anAmplitudeFluctuationelectronicspecklepattern
interferometer(AF - ESPI)wasproposedby Wanget al. [59] for out-of-pane
measurements.ThiswasusedbyMa etal. [60]andshowedtheresonantpropertiesof a
rectangularcantileverplacewithcracks.Theadvantageof usingtheAF - ESPImethod
is thatresonantfrequenciesandthecorrespondingmodeshapescanbeobtained
simultaneouslyfromtheexperimentalmeasurement.

5.2 Principles of the Method--Fringe Formulation in ESPI and ESPSI

When a speckle pattern produced by a diffusing object surface interferes with a

reference light wave or with another speckle patter, a random interference pattern is

produced. The intensity distribution I (x, y) of the interference pattern is given as

I(x,y) = I o [1 + y cos¢(x,y)] (5.1)

where Io represents the average intensity of the two light beams 7 represents the

modulation of the interference term and ¢ (x, y) represents the random phase angle

before deformation of the object. When the object is deformed, an optical path change

occurs due to the surface displacement of the object. Thus, the intensity distribution

I'(x, y) of the interference pattern is slightly altered and now represented by

I'(x, y)= Io [ l + y cosO'(x, y) ]= Io { l + y cos[ O(x, y) + A ] } (5.2)

where ¢'(x, y) represents the random phase angle after deformation of the object and A

represents the relative phase change due to the object deformation, which can be

described by
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A =O'(x,y)-O(x,y) (5.3)

In electronic SPI and SPSI, i.e., ESPI and ESPSI, the two intensity distributions

I(x, y) and I'(x, y) before and after deformation are digitized and stored in two frames.

Subtraction of the two frames yields a fringe pattern. Since intensity of an image

cannot be negative, absolute values of the subtraction will be displayed. Now the eye

sees the average of the absolute values of the subtraction over an elementary area and

therefore,

Iav I(x,y)-I'(x,y)ldO
27v

4_lo sin 1=- (7 A)[ (5.4)

A visible fringe pattern is obtained on which the brightness is maximum when A =

(2n+l) rc and a minimum when A = 2nrc, n being the fringe order. In the real-time

method, the first intensity distribution is stored in one frame while a real-time frame

grabber stores the second image and the resultant image of the above subtraction

observation is displayed also in the real-time frame grabber and hence fringes can be
observed real-time on the monitor.

The phase shifting technique is used to determine the phase distribution in

interferometric fringes. When this technique is used in SPI and SPSI, the relative phase

change corresponding to the object surface displacements (in SPI) or the object surface

displacement gradients (in SPSI) due to object deformation can be determined

automatically and precisely by calculating the phase distribution from the measured

intensities. Generally speaking there are three unknowns in the intensity distribution of

Eq. (5.1). They are the average intensity Io, the modulation of the interference term 3'

and the phase distribution ¢ of the interference pattern. In order to calculate the phase

¢, it is necessary to record at least three intensity distributions corresponding to

different amounts of phase shift. Here, the situation of recording only three intensity

distributions sis discussed. For each recording of intensity an additional phase shift of

120 ° for one beam in the interferometer is used. Digitizing three intensity patterns

provides three equations like Eq. (5.1)

I 1(x,y) = Io {1+ _' cos{q)(x,y)] }

12 (x, y) = Io {1 + _' cos {q)(x, y) + 120 ° ]}

13 (x, y) = Io {1+ _' cos [q)(x, y) - 120 ° ]} (5.5)

The phase angle is then calculated at each detected point in this interference pattern as
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_/3 (I3 - 12)
¢ = arctan (5.6)

211 - I 2 - 13

After the object is deformed, three more frames of intensity data are taken while

shifting the phase with the same amount as for the first set of data. The phase

distribution ¢" of the interference pattern after deformation can also be calculated, as

was obtained previously for ¢.. The time for the acquisition of one frame image is

usually 40gs and the calculation of the phase distribution ¢ or ¢" can be finished within

one second. Once these data are taken, the relative phase change can be calculated

simply by subtracting ¢ from ¢" according to Eq. (5.3).

5.3 General Experimental Set-up and Measurements

Electronic Speckle Pattern Interferometry is a method of producing

interferograms without using a traditional holographic technique. The image data are
digitized by a video camera and digital signal processors, because the interferometric

1
image are recorded and updated by the video camera every _ sec, ESPI is faster in
operation with the entire measurement completed in a couple of hours and more

insensitive to environmental and machine noise compared to the conventional contact
accelerometer techniques.

The out-of-plane and in-plane vibrating measurement by ESPI is shown

schematically. If the image is taken after the specimen vibrates periodically, a charged

coupled camera picks up the light intensity detected. A laser beam is used as the

coherent light source, which is further being divided into two parts, the reference beam

and the object beam by the beam splitter. The object beam travels to the specimen and

then reflects to the CCD (charged coupled device) camera. The reference beam goes

directly to the CCD camera via a mirror and a reference plate. The CCD camera

converts the intensity distribution of the interference pattern of the object into a

corresponding video signal at 30 frames/sec. The signal is electronically processed and

converted to an image on the video monitor. The interpretation of the fringe image is

similar to reading a contour map of the displacement field. A piezoelectric actuator that

is attached to the specimen can excite the plate. To achieve the desired output of

vibration frequency a digitally controlled function generator connected to a power

amplifier is used. This entire experimental setup, as shown in Fig. 5.1 once setup in

place doesn't require further human intervention to measure the mode frequencies and

vibration of the structure. The accuracy obtained by using the ESPI full field method of

experimental investigation is in the order of micrometer.

A similar setup can be used for measuring the slopes or changes in gradient in

the structure. Although the time need for setup is more, the accuracy and the images

obtained are in full completeness with respect to the space and content of the structure.
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Fig. 5.1: Schematic Diagram of ESPI Experimental setup for out-of-plane measurement.
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5.4 Specimen Description and Results

The material properties of the plate are mass density p = 2700 Kg/m3, Young's

modulus E = 70.9 Gpa and Poisson's ratio v = 0.33. The location of the crack

(represented as x) and the geometric dimensions of the plate are shown in Fig. 5.3, the

thickness of the plate is 1 mm and crack length a = 20, 35 and 50 mm. These are the

same as reported in reference [60].

The "independent" confirmations of the experimental AF ESPI using finite

element results are obtained by using ABAQUS, finite element modeling package in the

above mentioned reference [60]. In all, a total of 1200 elements with eight-node two-

dimensional shell elements ($8R5) were used in the analysis. This element

approximates the Mindlin-type element that accounts for the rotary inertia effects and

first-order shear deformations through the thickness. The same number of elements was

used in order plot the mode shapes, the spatial distribution of defect energy force

intensity parameter and nodal damage energy vector field diagram using the Damage

Detection Code (DDC). The detailed of this latter code were described in the previous

chapters (see Chapter III); for further details see also Saleeb et al. [53, 54].

- L = 80 mm -

fi

II

-
Fig. 5.2: Geometric dimensions and configurations of cracked rectangular plate.
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Table5.1showstheresultsof thefirst 10resonantfrequenciesfor different
cracklengthsof 20mm,35mm and50mm,obtainedby theexperimentalAF ESPI,
Finiteelementmethod(Abaqus)andtheDDC code.It is observedthattheresultsare
consistentandveryclosefrom allthemethodswhichis remarkableconsideringthe
rathersmallnumberof totalDOF'sin meshesusingtheDDC(i.e.,bilinearelement
basisin DDCascomparedto biquadraticelementin ABAQUSFEcode.Dueto the
factthatin arealexperimentthesupportscannotbemadeideallyrigid, thevaluesof the
frequenciesaremuchlowerascomparedtotheFiniteElementanalysisor theDDC
results(comparethethreecolumnsof eachof thecasesof Table5.1). In Fig. 5.3,the
3Dmodeshapesof thedamagedandtheundamagedplateareshownfor cracklength
20mm,35mmand50mmcloseto thesupport.Thecorrespondingcontoursfor the
modeshapesarecomparedusingthevariousmethodsasshowninFig. 5.4,Fig.5.5and
Fig.5.6,for cracklength20mm,35mmand50mm,respectively.

Themodeshapesfor eachofthe largercracklengths(35mmand50mm)
showedsignificantchangesin patternfor basicallyall themodes(fromthefirstmodeto
thelastmode),relativeto thebasereferencecaseof 20mmcrack.Forexample,
considerthemodeshapenumbersoneandtwotogetherin Fig.5.4and5.6,andthen
modesnineandtenin Fig.5.4,andtheir counterpartsin Fig.5.5,i.e.,to compare
changesinpattern:

i.

ii.

From reference state (20 mm crack) to changed state of maximum (50 mm

crack), and

From the reference versus the medium-size crack states (20 mm versus 35 mm),

respectively

Considering case (i), for modes one of Fig. 5.4 and Fig. 5.6, significant variations

for the slopes/curvatures of the mode contour plots are visible all along the lower

support line (including the actual damages but also quite apparent changes occur at the

right lower quarter zone of the plate with no cracks existing there). Also, the most

dramatic changes in these modes slopes/curvatures of modes two, in Fig. 5.4 and 5.6,

are visible alone the entire strip of the plate covering approximately one third of its

horizontal dimension (i.e., not restricted to the nearly 30 mm length of the fixed support

line, as would be ideally anticipated for damage-state changes produced from a crack

length of 20 mm to its increased length 50 mm). Moving next to the comparisons of the

higher mode numbers nine and ten in Fig. 5.4 (reference state) and Fig. 5.5 (medium

crack-length damaged state), one essentially notices that the entire plate domain exhibits

large pattern changes in these modes "slope/curvature" features. In conclusion, using

the notions of differences in such simple measures (as slopes, etc.) of the mode shapes

(even in their full field format presented here) will (at best) lead to contradictory

results as to the damage localization capabilities. This points out to the important fact

that looking at the contour intensity of the mode shapes there is no consistency in the

pattern in pointing out the location of the damage. The same conclusion applies for both

the two damage scenarios, i.e., crack lengths of 35 mm and 50 mm, with the 20 mm

crack serving as reference.
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Ontheotherhand,wehaveconsideredthefollowingargumentsto determinethe
effectivenessof thedamagedefectenergyparameterandthevectorialfieldsof nodal
damageforces(asoutlinedin ChapterIII). Thedisplacementresults(norotations)from
themodesshapesof the"healthy"platewereconsideredasa20mmboundarycrackvs.
the"damaged"plateasa35mmanda50mmboundarycracksfortheplate(Fig.5.7
andFig. 5.8,respectively).Boththeenergyvectorfield diagramandthecontour
intensitydiagramsareplottedfor theabovecases.In thefigureswehaveemployedthe
followingconvention,i.e.,thepart(a)in eachfigurerepresentstheenergyvectorfield
diagramand(b)representsits associatedcontourintensityplot, thelatterthusproviding
athirdalternativefor furtherenhancedvisualization.The(c), (d)and(e)representthe
contourintensityplotsfor individualforcecomponentsof thedamageparameters
respectivelyaswascustomarilyusedin ChapterIII.

For allthecasesto bereportedhere,onlythedatafor theverticaldisplacements
andfrequencies(for alltenmodes)wereprovidedto theDDCcode,asmeasured
response(i.e.,still lackinganyrationalDOFinputto representincompletein data
content,althoughit isworthmentioningthatrecentreportingin theliteratureonusing
ESPI/ESSIprovidefor bothtypesof measurements.However,aswill besubsequently
demonstrated,excellentdetection/localizationresultswereobtainedfromthepresent
globalscheme.Of course,betterresolutionsareanticipatedif theadditional
measurementsof therotationDOFarealsoincorporatedin theprocessingof thedatain
theDDCcode.

Thefinal resultsobtainedaredepictedin Figs.5.7and5.8,for theincreased
damagescenariosof cracklengthsextendingto 35mmand50mm,respectively,from
thebaselineconditionof aplatewith a20mmcracklengthalongthefixedsupportline.
Forall themodesconsidered,averycrispanddistinctpatternis clearin all theplots.
Theconsistently recognizedvectorfield patterns,i.e.,pointingoutwardlyfromthe
damageinflictedregions,persistedin all thecases,thus"proving"all thetheoretical
featuresalludedto in ChapterIII, i.e.,dissipation driven vector directions with

increased true damages. As the crack propagates further, so will the length of

significant, outwardly - pointing, vector fields that are plotted along the support line,

with virtually zero interference from the other areas that are removed from the damage
zone.

An accuracy of the above mentioned magnitude has never been exhibited (to this

authors knowledge) by any of the earlier methods used by various researchers in

damage detection. Indeed, the mere attempts to detect faults on the two dimensional

surfaces (as in the domain of the present plate) are virtually nonexistent in the currently
available literature on detection (mostly searches on "lines" were reported). Further, a

crack in the boundary region usually involves a lot of self-induced noise that pollutes

the real processing of data in any damage parameter, but the results obtained from the

present DDC were very encouraging. The problem of measuring points on or near the

boundary has always proved to be difficult due to the difficult accessibility for

conventional/sensor like attachments in modal testing. The crack introduces a new free
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boundaryoftheplate,themodeshapeis quitecomplicatedanddifferentfromthatof a
platewithoutacrack. Manyresearcheshavethereforerestrictedthescopeof their
detectiondemonstratingto casesinvolvingdamageslocatedsomewhere"inside"the
test objectdomain.Thisis aneasiercase,i.e., alleviatingthepotentialextreme
difficulty in applying,e.g.,finite differencingschemes,to obtainsuchmeasuresas
slop/curvaturesof modesataboundarypoint. Any suchmethodswill mostlikely fall
shortwhentheyreachtheendor theedgeof thedomain.Judgingby theobtained
resultshere,thepresentschemedoesnot seemto besufferingfromanysuch
limitations.
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Z Table5.1:Comparisonof theFrequenciesfor thefirst 10resonantmodesbyAF-ESPI,FEMandDDC.

b.3

Frequencies (in Hz) for the modes

Crack length x = 20 mm x = 35 mm x = 50 mm

Mode # AF _ ESPIFinite Element Damage Code AF _ ESPIFinite Element Damage Code_F _ ESPIFinite Element Damage Code

1 196.00 224.00 218.17 167.00 188.00 199.72 124.00 140.00 145.23

2 397.00 418.00 418.27 322.00 344.00 413.34 244.00 268.00 399.34

3 964.00 1012.00 1051.00 711.00 754.00 1051.76 582.00 618.00 1019.69

4 1244.00 1393.00 1406.23 1140.00 1220.00 1359.42 1039.00 1106.00 1194.17

5 1454.00 1652.00 1688.21 1355.00 1558.00 1692.25 1287.00 1493.00 1649.34

6 2154.00 2329.00 2551.55 1912.00 2025.00 2531.57 1841.00 1918.00 2374.37

7 2544.00 2634.00 2635.33 2444.00 2564.00 2636.82 2084.00 2163.00 2541.21

8 2988.00 3133.00 3345.57 2958.00 2852.00 3370.77 2577.00 2661.00 2838.98

9 3969.00 4227.00 4218.15 3618.00 3842.00 4097.69 3170.00 3334.00 3641.33

10 4224.00 4508.00 4489.73 4050.00 4278.00 4472.69 3809.00 4143.00 4260.25

b.3
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• Mode 1:

AF - EFSI Finite Element Code

+:+ +:

..................ii

Damage detection code

• Mode 2:

AF EFSI Finite Element Code Damage detection code

• Mode 3:

AF EFSI Finite Element Code Damage detection code

• Mode 4::

AF EFSI Finite Element Code Damage detection code

Fig. 5.4: Mode Shape contour plots using various methods for a = 20 mm crack.
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• Mode 5:

AF - EFSI Finite Element Code Damage detection code

• Mode 6:

Finite Element Code Damage detection code

• Mode 7:

Finite Element Code Damage detection code

• Mode 8:

AF EFSI Finite Element Code Damage detection code

Fig. 5.4 (Continued): Mode Shape contour plots using various methods for a = 20 mm

crack.
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• Mode 9:

AF - EFSI Finite Element Code Damage detection code

• Mode 10:

AF EFSI

.............j ':i

Finite Element Code Damage detection code

Fig. 5.4 (Concluded): Mode Shape contour plots using various methods for a = 20 mm
crack.
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• Mode 2:

AF EFSI Finite Element Code Damage Detection Code

• Mode 3:

AF EFSI Finite Element Code Damage Detection Code

• Mode 4:

AF EFSI Finite Element Code Damage Detection Code

Fig. 5.5: Mode Shape contour plots using various methods for a = 35 mm crack.
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• Mode 5:

AF EFSI

• Mode 6:

AF EFSI

• Mode 7:

AF EFSI

• Mode 8:
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Finite Element Code

Finite Element Code

Finite Element Code

Finite Element Code

Fig. 5.5 (Continued): Mode Shape contour plots using various

crack.
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• Mode 9:

AF EFSI Finite Element Code Damage Detection Code

• Mode 10:

AF EFSI Finite Element Code Damage Detection Code

_ /i_ 12.,_

Fig. 5.5 (Concluded): Mode Shape contour plots using various methods for a = 35 mm

crack.
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• Mode1:

AF EFSI Finite Element Code Damage Detection Code
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• Mode 2:
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• Mode 4:

AF EFSI Finite Element Code Damage Detection Code

Fig. 5.6: Mode Shape contour plots using various methods for a = 50 mm crack.
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• Mode 5:

AF EFSI

• Mode 6:

AF EFSI

• Mode 7:

AF EFSI

• Mode 8:

AF EFSI

Finite Element Code

Finite Element Code

Finite Element Code

Finite Element Code

Fig. 5.6 (Continued): Mode Shape contour plots using various

crack.
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• Mode 9:

AF EFSI Finite Element Code Damage Detection Code

• Mode 10:

AF EFSI Finite Element Code

Fig. 5.6 (Concluded): Mode Shape contour plots using various

crack.

Damage Detection Code

methods for a = 50 mm
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boundary crack.
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Fig. 5.8 (Continued): Energy vector field plot, nodal damage intensity and damage

defect Energy Parameter contour intensity for 20 mm boundary crack versus the 50 mm

boundary crack.
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Fig. 5.8 (Continued): Energy vector field plot, nodal damage intensity and damage

defect Energy Parameter contour intensity for 20 mm boundary crack versus the 50 mm

boundary crack.
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Fig. 5.8 (Concluded): Energy vector field plot, nodal damage intensity and damage

defect Energy Parameter contour intensity for 20 mm boundary crack versus the 50 mm

boundary crack.
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5.5 Conclusions

A very important aspect that one has to consider from this chapter on full field

investigation is that emerging new technologies such as ESPI and ESSI, are becoming

available, which will provide all information and knowledge regarding the structural

responses of complex configurations, (namely, frequencies, various modes,

displacements, slope, etc.). The wealth of these accurate data can further be obtained

without the harmful effects of the surrounding environment, in a short period of time
and without human intervention or contact with the structural element under

consideration. However, the full power of these experimental methods for detecting can

only be realized if matched by robust detection/localization parameters that are able to

reflect clear identifiable parts. For instance, using the contour plots only from the mode

shapes, and comparing the patterns between the various cracked plate problems, it is

seen that one can be easily mislead in locating the damage, even of all the details of

these modes are given. Therefore, we have emphasized before coming to the alternative

viewpoint here by using the vector like indices which possess sufficiently general

properties (both intensity and directions) to reveal crisp and distinct persistent patterns

for this purpose. In applications, the contour and vector plots for these were shown to

be consistent across the entire spectrum often vibration modes considered.

6.0 SUMMARY AND CONCLUSIONS

6.1 Summary

The present study was conducted in conjunction with an ongoing research

program dealing with the development of an integrated analytical/experimental NDE

methodology for structural health/condition monitoring. The implementation of the

overall procedure is formatted as a direct, global detection scheme. For this purpose the

key ingredient is the use of a damage defect energy parameter, named the defect index.

It provides the required sensitivity measure for detecting of localized damage/fault, on

the basis of measured structural response signatures both static and dynamic.

From the viewpoint of practical utilization in structures, extensive testing for a

valid assessment of any NDE technique becomes necessary, especially in view of the

many complicating factors and the vast universe of damage detection scenarios that are

likely to be encountered. To this end, the major problem addressed in this report has

been concerned with the assessment of currently available experimental methods to be

used in conjunction with the theoretical developments. With the further challenge

stemming from the desire to search for damage locations over two-dimensional

surfaces, two specific experimental investigations were conducted on the

flexural/bending vibrations of plate. The first utilizes the more conventional approach in

modal - testing, i.e., based on a coarse network of sensors (contacting accelerometers

attached to the plate surface to measure vertical displacement amplitudes). This was

conducted as part of the in-house developments at the funding agency (NASA Glenn
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Center).Thesecondinvestigationfocusedonresultsobtainedfromthenewlyemerging
technologies,e.g.,ESPIandESSI,for full-fieldmeasurements.

6.2 Conclusion

Based on the presented results, the following conclusions may be made:

1. The spatial distribution of the damage defect energy parameter exhibited a

distinctive pattern along the plate axes; i.e., calm with abrupt spikes or peaks

after crossing the damage location. The simplicity of this intensity

distribution renders the scheme very appealing when used in pattern

recognition algorithms.

2. However, the use of only intensity (scalar type) plots as in (1) above was

found to be limited in applicability when false alarm tests are included

(e.g., due to environmental/operational changes but not actual defects. To

this end, the complementing vector field plots were found to be essential,

with their distinct directional properties (i.e., dissipation driven vector field

directions). The resulting multi-mode visualization scheme, i.e., intensity

contours and vector plots, were shown to be very robust in all the cases,

particularly in distinguishing true damage from false alarm tests.
3. From the data of the experiments conducted by NASA and the processing of

modal - testing results, the method for determining the damage using the

above two visualization methods gave quite encouraging results. The

method correctly identified a false alarm case and damage sites in the two

other true - defect scenarios were found. Despite the presence of a

tremendous amount of variability/noise, in the experiments and with a rather

limited number of points for measurements of the structural quantities (only

vertical deflections were measured on a 8 × 8 grid). We specially identified

the fact that all measurements for rotations were lacking contributed

significantly to the inaccuracies and degradation of the current schemes

ability to pinpoint damage sites.

4. As the culmination of the results in the report, the full field measurements

provided by the technique of ESPI experimentation, were utilized to show

the full potential of the suggested NDE methodology. In particular, for all

the ten modes of vibrations interrogated here for the difficult case of a one

edge supported plate with a propagating crack, both intensity contours and

vector plots gave excellent results in all the cases.
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6.3 Future Work

Collectively, the results obtained from work performed to date (including earlier

theoretical and experimental studies), as well as the work in the present research will

provide guidance in proposals for the three possible future work areas, including.

(i)

(ii)

(iii)

To conduct more extensive studies involving full field measurements, also

with static laboratory testing (to minimize noises possible).

To demonstrate feasibility in field-testing. It requires a very carefully

planned integration of hardware and software, for both calibration and

portability requirements.

A necessary and important collorary to item (ii) above concerns the inherent

uncertainties implied in any experimental measurements on which the

present (or any other) NDE scheme relies. This requires the use of

sophisticated statistical tools for the ensuing statistical pattern recognition

paradigm, i.e., involving extensive data compression, (as in principal

component analysis, etc.), feature extraction and discrimination (as

emphasized in Chapters III to V here), and statistical modeling (for process

control, regression, outlier detections, etc. Only then one can assure in a

quantifiable manner that the measured changes in the response are indicative

of true deteriorations/damages, as opposed to operational and/or
environmental variabilities.
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APPENDIX A

VARIABILITY/NOISE IN THE EXPERIMENTAL MEASUREMENTS

The measurements taken from the accelerometer for the plate modal

displacements were checked for the presence of a pattern indicating the variation/noise.

From the statistical analysis, using various methods as illustrated did not show any trend

or a pattern but showed that the measurements were purely random noise.

A.1 Assumptions

• Each test in each mode is independent of the other.

• Relationship between modes is not considered. (Each mode is independent of the

others.)

• Boundary and initial condition for both tests in each mode are the same,

respectively.

A.2 Normality Test of Errors

• Find overall average error and standard deviation assuming normal distribution of

points.

• Group the actual points from the test according to error.

• Use Z2 test to confirm or reject normality assumption.

Random Tests

Chi Sqaure Test Results

Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

Mode 6

P-value Remarks

0.505

0.015

0.853

0.035

0.381

Accept

Reiect

Accept

Reiect

Reiect

Accept

KS Test

P-value Remarks

< 0.01 Reject

< 0.01 Reiect

0.054 Accept

< 0.01 Reiect

< 0.01 Reject

< 0.01 Reject
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A.3 Overall (System Wide) Displacement

Getting the difference in displacement (or error) between two tests for each point, and

• Run t - test to find

>Mean and Standard deviation

>Confidence interval at 95%, 99% levels.

Mean Std. De,dation i Confidence Interval _
:: 95% :: :: 99% ::

Mode 1 -0.78 0.744

Mode 2

Mode 3

Mode 4

Mode 5

Mode 6

-0.0818

0.3138

0.824

-0.662

-1.27

0.2782

0.2598

2.462

1.324

8.62

(_-0.99 _, ::-0.57 ::)

(i-0.16i,::-0 ::)

(_0.239 0.388ii )

i i ii i

({ 0.117i, i 1.531 ::)

(_-1.04 _, _-0.28 _)

(_-3.75_,i 1.2 i)

(_-1.07_,_-0.49_)

(i -0.19 i::,::i0.025i)

0.214 0.413
i ii ii i

(ii -0.12 !i!i,!i!i1.767 !i

(_ -1.17 _, _-0.16 _)

(_ -4.58 _i,i_2.03 _)

A.4 Overall (System Wide) Displacement Using Relative Error

Relative error = Error for each point/average magnitude.

Defined as "Average magnitude" is defined as the absolute value for each

displacement, then adding together and dividing by 2.

Meen Std De4aioq

MoOel -QQ2997 QQ_£8

MoOe2 -0.1382 Q3816

MoOe3 Q0518 Q0711

MoOe4 Q1928 Q4014

MoOe5 -0.1258 Q4C88

Mode6 -Q19 1.282

Q:rlida_e Intend
98% 99%

( -0.CS_LPl, QCffl7 -QOd.1 , -Q018_3)

(-0.2478,-QC£86 -0.9844, QOC8 )

( QQ314 , Q0723 QCk;_46, Q0-/91 )

( Q075 , Q3C86 QQ365 , Q3441 )

( -0.2413, -QOCR3 -Q28 , QQ_4 )

( _552 , Q173 -Q673 , Q294 )
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A.5.I Regression analysis of errors versus average magnitude (Linear equation)

• Linear Error = f (average magnitude)

• Linear Graph y = c + (m x) where y = error in experiment and x = average

magnitude as shown in Fig. A.l.

c m R - sq (%)

mode 1 0.176 -0.0368 45.4

mode 2 -0.189 0.0407 7.3

mode 3 0.171 0.015 16.5

mode 4 -0.895 0.487 12

mode 5 -1.39 0.029 8.5

mode 6 0.08 -0.202 0.6

A.5.2 Regression analysis of errors versus average magnitude (non-linear--

quadratic equation)

Non Linear Error = f (average magnitude)

Linear Graph y = f(x) where y = error in experiment and x = average magnitude as

shown in Fig. A.2

Regression Analysis Quadratic Curve Graph ( y = c + b x + a x2 )

y = error in the experiment

x = avaerage magnitude

c b a R - sq (%)

mode 1 -2.00E-03 -1.87E-02 -3.41E-04 46.3

mode 2 -2.80E-01 0.13024 -1.44E-02 9.9

mode 3 4.82E-02 5.45E-02 -1.82E-03 23.7

mode 4 2.22808 -1.8516 0.332162 24.9

mode 5 -2.4221 0.14728 -2.40E-03 21.6

mode 6 -1.6789 0.303721 -2.94E-02 0.9

The Higher the value of R-sq the better the result
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A.5.3.1 Regression analysis of error versus distance from fixed end

• Error = y (horizontal distance to fixed end)

• The horizontal distance to the fixed end is up to the third column. Each side from

the fixed end is treated individually and combined.

• Linear Graph y = c + (m x) where y = error in experiment and x = horizontal

distance from fixed end as shown in Figs. A.3, A.4 and A.5.

c m R - sq (%)

mode 1 -0.048 -0.225 4 mode 1

mode 2 -0.043 0.0279 0.5 mode 2

mode 3 -0.053 0.214 40.6 mode 3

mode 4 -0.48 1.01 5.3 mode 4

mode 5 0.655 -0.538 7.4 mode 5

mode 6 -3.337 0.428686 0.3 mode 6

c m R- sq (%)

0.044 -0.462 72

0.0327 -0.0836 12.1

-0.0532 0.13 31

-0.022 0.136 38.6

0.4797 -0.5816 20.5

-1.9429 -0.1588 0

_BomBinedDistance_omtixedend ii
c m R- sq (%)

mode 1 -0.0023 -0.3436 14

mode 2 -0.0052 -0.0279 0.7

mode 3 -0.0053 0.1717 31.4

mode 4 -0.025 0.574 3.2

mode 5 0.567 -0.5599 11.2

mode 6 -2.64 0.13 0
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A.5.3.2 Regression analysis of error versus distance from fixed end (Quadratic

Graph)

• Error = y (horizontal distance to fixed end)

• The horizontal distance to the fixed end is up to the third column. Each side from

the fixed end is treated individually and combined.

• Quadratic Graph y = f (x) where y = error in experiment & x = horizontal distance

from fixed end as shown in Fig. A.6, A.7 and A.8

c b a R-sq(%) c b a R-sq(%i

mode 1 0.0239 -0.3120 0.0216 4.0000 mode 1 0.5080 -1.0190 0.1393 74.1000

mode 2 -0.2500 0.2777 -0.0625 1.3000 mode 2 0.2963 -0.3999 0.0791 15.7000

mode 3 -0.3500 0.5732 -0.0898 43.0000 mode 3 0.0696 -0.0177 0.0368 31.9000

mode4 -4.1144 5.3797 -1.0917 7.4000 mode4 0.0327 0.0698 0.0166 38.8000

mode 5 -2.2892 2.9949 -0.8833 14.0000 mode 5 -0.7700 0.9134 -0.3737 23.3000

mode 6 13.8175 -20.1560 5.1464 17.1000 mode 6 3.2319 -6.3686 1.5525 1.0000

Combined Distance from fixed end i i

c b a R - sq (%)

mode 1 0.2660 -0.6655 0.0805 14.3000

mode 2 0.0225 -0.0611 0.0083 0.7000

mode 3 -0.0140 0.2777 -0.0265 31.6000

mode 4 -2.0408 2.7248 -0.5376 4.1000

mode 5 -1.5276 1.9541 -0.6285 15.9000

mode 6 8.5247 -13.2627 3.3494 5.5000

NASA/C_2002-211685 136



Z
>

>

bO
0
0
bO

;o

C_
LJ/

U.

Fig. A.6: Regression analysis of error versus distance from fixed end Left Distance from Fixed End Quadratic Equation

i_i_̧_ _";_;_/////////////////////////////////////_;i _ ;_

25

2o

_ !0

,0_

Io

RegressiOn Plot

i

m21effdist

Regression Plot

R,sq.i 3_

I i

• !

m21eIldist

_;;;_,_; .......................................................

Regression PI0t

0
n131effdist

Mode 1 Mode 2 Mode 3

Regression Plot

_q=z4_c

,o

e

I
m41eltdist

Regression Plot

msleftdist

Regression Plot

m61effdist

Mode 4 Mode 5 Mode 6



Z
>
C/3

>

hJ

hJ

Oo
L_

C.
Oo
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A.5.4 Regression analysis of difference (in absolute values) in errors versus

distance for each point

• Getting errors for each point. For each point, the difference of errors (using absolute

values) from the adjacent points for one space and two spaces, for every point up to
the third column.

• Run regression to see continuity of change of errors.

Diff. in errors = z (distance from point)

i Left Distance from fixed end i ::Right Distance from fixed end iComl_inect-Disiance-fromfixect-enct ..................i

c m R- sq (%) c m R- sq (%) c m R- sq (%)
mode 1 -0.048 -0.225 4 mode 1 0.0436 -0.4617 72 mode 1 -0.0023 -0.3436 14

mode 2 -0.043 0.079 0.5 mode 2 0.0327 -0.0836 12.1 mode 2 -0.00523 -0.0279 0.7

mode 3 -0.053 0.2138 40.6 mode 3 -0.053 0.1296 31 mode 3 -0.053 0.1717 31.4

mode 4 -0.48 1.013 5.3 mode 4 -0.022 0.13608 38.6 mode 4 -0.25 0.5745 3.2

mode 5 0.655 -0.538 7.4 mode 5 0.4797 -0.5816 20.5 mode 5 0.597 -0.5599 11.2

mode 6 -3.337 0.42868 0.3 mode 6 -1.9429 -0.1588 0 mode 6 -2.63998 0.1349 0
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Fig. A.9: Regression analysis of difference (in absolute values) in errors versus distance for each point Left Distance from
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